These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37027608)

  • 1. Few-Shot Drug Synergy Prediction With a Prior-Guided Hypernetwork Architecture.
    Zhang QQ; Zhang SW; Feng YH; Shi JY
    IEEE Trans Pattern Anal Mach Intell; 2023 Aug; 45(8):9709-9725. PubMed ID: 37027608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction.
    Liu X; Song C; Liu S; Li M; Zhou X; Zhang W
    Bioinformatics; 2022 Oct; 38(20):4782-4789. PubMed ID: 36000898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticancer drug synergy prediction in understudied tissues using transfer learning.
    Kim Y; Zheng S; Tang J; Jim Zheng W; Li Z; Jiang X
    J Am Med Inform Assoc; 2021 Jan; 28(1):42-51. PubMed ID: 33040150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MGAE-DC: Predicting the synergistic effects of drug combinations through multi-channel graph autoencoders.
    Zhang P; Tu S
    PLoS Comput Biol; 2023 Mar; 19(3):e1010951. PubMed ID: 36867661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative embedding for model-based classification of fMRI data.
    Brodersen KH; Schofield TM; Leff AP; Ong CS; Lomakina EI; Buhmann JM; Stephan KE
    PLoS Comput Biol; 2011 Jun; 7(6):e1002079. PubMed ID: 21731479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A complete graph-based approach with multi-task learning for predicting synergistic drug combinations.
    Wang X; Zhu H; Chen D; Yu Y; Liu Q; Liu Q
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37261842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning.
    Wang Y; Zhang L; Yao Y; Fu Y
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6240-6253. PubMed ID: 34081579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MARSY: a multitask deep-learning framework for prediction of drug combination synergy scores.
    El Khili MR; Memon SA; Emad A
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37021933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Squeeze & excite' guided few-shot segmentation of volumetric images.
    Guha Roy A; Siddiqui S; Pölsterl S; Navab N; Wachinger C
    Med Image Anal; 2020 Jan; 59():101587. PubMed ID: 31630012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DTF: Deep Tensor Factorization for predicting anticancer drug synergy.
    Sun Z; Huang S; Jiang P; Hu P
    Bioinformatics; 2020 Aug; 36(16):4483-4489. PubMed ID: 32369563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BTR: training asynchronous Boolean models using single-cell expression data.
    Lim CY; Wang H; Woodhouse S; Piterman N; Wernisch L; Fisher J; Göttgens B
    BMC Bioinformatics; 2016 Sep; 17(1):355. PubMed ID: 27600248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolving the structure of interactomes with hierarchical agglomerative clustering.
    Park Y; Bader JS
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S44. PubMed ID: 21342576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated framework for identification of effective and synergistic anti-cancer drug combinations.
    Sharma A; Rani R
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850017. PubMed ID: 30304987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. bayesynergy: flexible Bayesian modelling of synergistic interaction effects in in vitro drug combination experiments.
    Rønneberg L; Cremaschi A; Hanes R; Enserink JM; Zucknick M
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34308471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization.
    Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S
    Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoupled Metric Network for Single-Stage Few-Shot Object Detection.
    Lu Y; Chen X; Wu Z; Yu J
    IEEE Trans Cybern; 2023 Jan; 53(1):514-525. PubMed ID: 35213322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semisupervised Generative Autoencoder for Single-Cell Data.
    Trong TN; Mehtonen J; González G; Kramer R; Hautamäki V; Heinäniemi M
    J Comput Biol; 2020 Aug; 27(8):1190-1203. PubMed ID: 31794242
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.