These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37027633)

  • 21. Deep Temporal-Spatial Feature Learning for Motor Imagery-Based Brain-Computer Interfaces.
    Chen J; Yu Z; Gu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2356-2366. PubMed ID: 32956061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clustering linear discriminant analysis for MEG-based brain computer interfaces.
    Zhang J; Sudre G; Li X; Wang W; Weber DJ; Bagic A
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):221-31. PubMed ID: 21342856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A New PLV-Spatial Filtering to Improve the Classification Performance in BCI Systems.
    Martin-Chinea K; Gomez-Gonzalez JF; Acosta L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2275-2282. PubMed ID: 35947562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals.
    Dash D; Ferrari P; Dutta S; Wang J
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A review of researches on electroencephalogram decoding algorithms in brain-computer interface].
    Zhou X; Xu M; Xiao X; Chen L; Gu X; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):856-861. PubMed ID: 31631636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Integrated Machine Learning-Based Brain Computer Interface to Classify Diverse Limb Motor Tasks: Explainable Model.
    Hashem HA; Abdulazeem Y; Labib LM; Elhosseini MA; Shehata M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Canonical Polyadic Decomposition With Auxiliary Information for Brain-Computer Interface.
    Li J; Li C; Cichocki A
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):263-271. PubMed ID: 26485727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of critical challenges in MI-BCI: From conventional to deep learning methods.
    Khademi Z; Ebrahimi F; Kordy HM
    J Neurosci Methods; 2023 Jan; 383():109736. PubMed ID: 36349568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the use of interaction error potentials for adaptive brain computer interfaces.
    Llera A; van Gerven MA; Gómez V; Jensen O; Kappen HJ
    Neural Netw; 2011 Dec; 24(10):1120-7. PubMed ID: 21696919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel motor imagery EEG decoding method based on feature separation.
    Yang L; Song Y; Ma K; Su E; Xie L
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33545691
    [No Abstract]   [Full Text] [Related]  

  • 34. [A review of researches on decoding algorithms of steady-state visual evoked potentials].
    Yang M; Jung TP; Han J; Xu M; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Apr; 39(2):416-425. PubMed ID: 35523564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing Prediction Model for a Noninvasive Brain-Computer Interface Platform Using Channel Selection, Classification, and Regression.
    Borhani S; Kilmarx J; Saffo D; Ng L; Abiri R; Zhao X
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2475-2482. PubMed ID: 30640636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MNE Scan: Software for real-time processing of electrophysiological data.
    Esch L; Sun L; Klüber V; Lew S; Baumgarten D; Grant PE; Okada Y; Haueisen J; Hämäläinen MS; Dinh C
    J Neurosci Methods; 2018 Jun; 303():55-67. PubMed ID: 29621570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Information Theoretic Feature Transformation Learning for Brain Interfaces.
    Ozdenizci O; Erdogmus D
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):69-78. PubMed ID: 30932828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review.
    Zhang K; Xu G; Zheng X; Li H; Zhang S; Yu Y; Liang R
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.