These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37027645)
1. NGCICM: A Novel Deep Learning-Based Method for Predicting circRNA-miRNA Interactions. Ma Z; Kuang Z; Deng L IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3080-3092. PubMed ID: 37027645 [TBL] [Abstract][Full Text] [Related]
2. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. Wang L; You ZH; Li YM; Zheng K; Huang YA PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655 [TBL] [Abstract][Full Text] [Related]
3. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification. Li G; Li Y; Liang C; Luo J Brief Funct Genomics; 2024 Jul; 23(4):418-428. PubMed ID: 38061910 [TBL] [Abstract][Full Text] [Related]
4. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network. Ma Z; Kuang Z; Deng L BMC Bioinformatics; 2021 Nov; 22(1):551. PubMed ID: 34772332 [TBL] [Abstract][Full Text] [Related]
5. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning. Li G; Lin Y; Luo J; Xiao Q; Liang C Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557 [TBL] [Abstract][Full Text] [Related]
6. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network. Cao R; He C; Wei P; Su Y; Xia J; Zheng C Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487 [TBL] [Abstract][Full Text] [Related]
7. PMiSLocMF: predicting miRNA subcellular localizations by incorporating multi-source features of miRNAs. Chen L; Gu J; Zhou B Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39154195 [TBL] [Abstract][Full Text] [Related]
8. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information. Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701 [TBL] [Abstract][Full Text] [Related]
9. NSL2CD: identifying potential circRNA-disease associations based on network embedding and subspace learning. Xiao Q; Fu Y; Yang Y; Dai J; Luo J Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33954582 [TBL] [Abstract][Full Text] [Related]
10. Likelihood-based feature representation learning combined with neighborhood information for predicting circRNA-miRNA associations. Guo LX; Wang L; You ZH; Yu CQ; Hu ML; Zhao BW; Li Y Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38324624 [TBL] [Abstract][Full Text] [Related]
11. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path. Chen L; Zhao X Math Biosci Eng; 2023 Nov; 20(12):20553-20575. PubMed ID: 38124565 [TBL] [Abstract][Full Text] [Related]
12. Biolinguistic graph fusion model for circRNA-miRNA association prediction. Guo LX; Wang L; You ZH; Yu CQ; Hu ML; Zhao BW; Li Y Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426324 [TBL] [Abstract][Full Text] [Related]
13. GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions. He J; Xiao P; Chen C; Zhu Z; Zhang J; Deng L Front Genet; 2022; 13():959701. PubMed ID: 35991563 [TBL] [Abstract][Full Text] [Related]
14. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework. Xiao Q; Luo J; Dai J IEEE J Biomed Health Inform; 2019 Nov; 23(6):2661-2669. PubMed ID: 30629521 [TBL] [Abstract][Full Text] [Related]
15. Identification of MiRNA-Disease Associations Based on Information of Multi-Module and Meta-Path. Li Z; Huang X; Shi Y; Zou X; Li Z; Dai Z Molecules; 2022 Jul; 27(14):. PubMed ID: 35889314 [TBL] [Abstract][Full Text] [Related]
16. Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children. Wu J; Li J; Liu H; Yin J; Zhang M; Yu Z; Miao H J Clin Lab Anal; 2019 Nov; 33(9):e22998. PubMed ID: 31429492 [TBL] [Abstract][Full Text] [Related]
17. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding. Guo LX; You ZH; Wang L; Yu CQ; Zhao BW; Ren ZH; Pan J Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088547 [TBL] [Abstract][Full Text] [Related]
18. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network. Bian C; Lei XJ; Wu FX Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34070678 [TBL] [Abstract][Full Text] [Related]
19. Prediction of circRNA-MiRNA Association Using Singular Value Decomposition and Graph Neural Networks. Qian Y; Zheng J; Jiang Y; Li S; Deng L IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3461-3468. PubMed ID: 36395130 [TBL] [Abstract][Full Text] [Related]
20. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. Zhang Y; Wang Z; Wei H; Chen M BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]