These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37027648)

  • 1. A 5.3 pJ/Spike CMOS Neural Array Employing Time-Modulated Axon-Sharing and Background Mismatch Calibration Techniques.
    Qi X; Zhao J; Lou Y; Wang G; Tang KT; Li Y
    IEEE Trans Biomed Circuits Syst; 2023 Apr; 17(2):286-298. PubMed ID: 37027648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-Power Spiking Neural Network Chip Based on a Compact LIF Neuron and Binary Exponential Charge Injector Synapse Circuits.
    Asghar MS; Arslan S; Kim H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34210045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Adaptive STDP Learning Rule for Neuromorphic Systems.
    Gautam A; Kohno T
    Front Neurosci; 2021; 15():741116. PubMed ID: 34630026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.
    Werner T; Vianello E; Bichler O; Garbin D; Cattaert D; Yvert B; De Salvo B; Perniola L
    Front Neurosci; 2016; 10():474. PubMed ID: 27857680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MorphIC: A 65-nm 738k-Synapse/mm
    Frenkel C; Legat JD; Bol D
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):999-1010. PubMed ID: 31329562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 0.086-mm
    Frenkel C; Lefebvre M; Legat JD; Bol D
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):145-158. PubMed ID: 30418919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware.
    Kim J; Koo J; Kim T; Kim JJ
    Front Neurosci; 2018; 12():829. PubMed ID: 30515074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Spiking Neurons Using Threshold Switching Devices for High-Efficient Neuromorphic Computing.
    Ding Y; Zhang Y; Zhang X; Chen P; Zhang Z; Yang Y; Cheng L; Mu C; Wang M; Xiang D; Wu G; Zhou K; Yuan Z; Liu Q
    Front Neurosci; 2021; 15():786694. PubMed ID: 35069102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CMOS-memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity.
    Ahmadi-Farsani J; Ricci S; Hashemkhani S; Ielmini D; Linares-Barranco B; Serrano-Gotarredona T
    Philos Trans A Math Phys Eng Sci; 2022 Jul; 380(2228):20210018. PubMed ID: 35658675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike Counts Based Low Complexity SNN Architecture With Binary Synapse.
    Tang H; Kim H; Kim H; Park J
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1664-1677. PubMed ID: 31603797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Area- and Energy-Efficient Spiking Neural Network With Spike-Time-Dependent Plasticity Realized With SRAM Processing-in-Memory Macro and On-Chip Unsupervised Learning.
    Liu S; Wang JJ; Zhou JT; Hu SG; Yu Q; Chen TP; Liu Y
    IEEE Trans Biomed Circuits Syst; 2023 Feb; 17(1):92-104. PubMed ID: 37015137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks.
    Zhang X; Lu J; Wang Z; Wang R; Wei J; Shi T; Dou C; Wu Z; Zhu J; Shang D; Xing G; Chan M; Liu Q; Liu M
    Sci Bull (Beijing); 2021 Aug; 66(16):1624-1633. PubMed ID: 36654296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Probabilistic Synapse With Strained MTJs for Spiking Neural Networks.
    Pagliarini SN; Bhuin S; Isgenc MM; Biswas AK; Pileggi L
    IEEE Trans Neural Netw Learn Syst; 2020 Apr; 31(4):1113-1123. PubMed ID: 31226090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hybrid CMOS-Memristor Neuromorphic Synapse.
    Azghadi MR; Linares-Barranco B; Abbott D; Leong PH
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):434-445. PubMed ID: 28026782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 4-fJ/Spike Artificial Neuron in 65 nm CMOS Technology.
    Sourikopoulos I; Hedayat S; Loyez C; Danneville F; Hoel V; Mercier E; Cappy A
    Front Neurosci; 2017; 11():123. PubMed ID: 28360831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Always-On Sub-Microwatt Spiking Neural Network Based on Spike-Driven Clock- and Power-Gating for an Ultra-Low-Power Intelligent Device.
    Chundi PK; Wang D; Kim SJ; Yang M; Cerqueira JP; Kang J; Jung S; Kim S; Seok M
    Front Neurosci; 2021; 15():684113. PubMed ID: 34354559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Co-Designed Neuromorphic Chip With Compact (17.9K F
    Hu SG; Qiao GC; Liu XK; Liu YH; Zhang CM; Zuo Y; Zhou P; Liu YA; Ning N; Yu Q; Liu Y
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1250-1260. PubMed ID: 36150001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers.
    Carrillo S; Harkin J; McDaid L; Pande S; Cawley S; McGinley B; Morgan F
    Neural Netw; 2012 Sep; 33():42-57. PubMed ID: 22561008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations.
    Camuñas-Mesa LA; Linares-Barranco B; Serrano-Gotarredona T
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-efficient neuron, synapse and STDP integrated circuits.
    Cruz-Albrecht JM; Yung MW; Srinivasa N
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):246-56. PubMed ID: 23853146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.