These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 37027680)
21. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
22. SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement. Liang Z; Li M; Zheng R; Tian Y; Yan X; Chen J; Wu FX; Wang J Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):282-291. PubMed ID: 33647482 [TBL] [Abstract][Full Text] [Related]
23. Deep Multi-Constraint Soft Clustering Analysis for Single-Cell RNA-Seq Data via Zero-Inflated Autoencoder Embedding. He Y; Chen X; Tu NH; Luo J IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2254-2265. PubMed ID: 37022218 [TBL] [Abstract][Full Text] [Related]
24. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data. Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142 [TBL] [Abstract][Full Text] [Related]
25. Attention-based deep clustering method for scRNA-seq cell type identification. Li S; Guo H; Zhang S; Li Y; Li M PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464 [TBL] [Abstract][Full Text] [Related]
26. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering. Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162 [TBL] [Abstract][Full Text] [Related]
27. Single Cell Self-Paced Clustering with Transcriptome Sequencing Data. Zhao P; Xu Z; Chen J; Ren Y; King I Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409258 [TBL] [Abstract][Full Text] [Related]
28. Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering. Gao H; Shen W; Li R; Liu C; Wu S IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1480-1491. PubMed ID: 38776196 [TBL] [Abstract][Full Text] [Related]
29. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
30. NMFLRR: Clustering scRNA-Seq Data by Integrating Nonnegative Matrix Factorization With Low Rank Representation. Zhang W; Xue X; Zheng X; Fan Z IEEE J Biomed Health Inform; 2022 Mar; 26(3):1394-1405. PubMed ID: 34310328 [TBL] [Abstract][Full Text] [Related]
31. Combining Global-Constrained Concept Factorization and a Regularized Gaussian Graphical Model for Clustering Single-Cell RNA-seq Data. Xu Y; Zhang W; Zheng X; Cai X Interdiscip Sci; 2024 Mar; 16(1):1-15. PubMed ID: 37815679 [TBL] [Abstract][Full Text] [Related]
32. CBLRR: a cauchy-based bounded constraint low-rank representation method to cluster single-cell RNA-seq data. Ding Q; Yang W; Luo M; Xu C; Xu Z; Pang F; Cai Y; Anashkina AA; Su X; Chen N; Jiang Q Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35870203 [TBL] [Abstract][Full Text] [Related]
33. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data. Qiu Y; Yan C; Zhao P; Zou Q Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068 [TBL] [Abstract][Full Text] [Related]
34. A Clustering Method for Single-Cell RNA-Seq Data Based on Automatic Weighting Penalty and Low-Rank Representation. Wang J; Wang Z; Yuan S; Zheng C; Liu J; Shang J IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):360-371. PubMed ID: 38319777 [TBL] [Abstract][Full Text] [Related]
35. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data. Wang Z; Wang H; Zhao J; Zheng C BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310 [TBL] [Abstract][Full Text] [Related]
36. nsDCC: dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis. Wang L; Li W; Zhou F; Yu K; Feng C; Zhao D Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327063 [TBL] [Abstract][Full Text] [Related]
37. Dual-GCN-based deep clustering with triplet contrast for ScRNA-seq data analysis. Wang L; Li W; Xie W; Wang R; Yu K Comput Biol Chem; 2023 Oct; 106():107924. PubMed ID: 37487251 [TBL] [Abstract][Full Text] [Related]
38. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations. Lei T; Chen R; Zhang S; Chen Y Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630 [TBL] [Abstract][Full Text] [Related]
39. Spectral clustering based on learning similarity matrix. Park S; Zhao H Bioinformatics; 2018 Jun; 34(12):2069-2076. PubMed ID: 29432517 [TBL] [Abstract][Full Text] [Related]
40. scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis. Wang HY; Zhao JP; Su YS; Zheng CH IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3685-3694. PubMed ID: 34752401 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]