These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 37027680)
41. A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering. Xu Y; Li HD; Pan Y; Luo F; Wu FX; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):431-442. PubMed ID: 31369384 [TBL] [Abstract][Full Text] [Related]
42. Comparison of scRNA-seq data analysis method combinations. Xu L; Xue T; Ding W; Shen L Brief Funct Genomics; 2022 Nov; 21(6):433-440. PubMed ID: 36124658 [TBL] [Abstract][Full Text] [Related]
43. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study. Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704 [TBL] [Abstract][Full Text] [Related]
44. Non-Negative Low-Rank Representation With Similarity Correction for Cell Type Identification in scRNA-Seq Data. Liu JX; Zhang DJ; Zhao JX; Zheng CH; Gao YL IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3737-3747. PubMed ID: 37751340 [TBL] [Abstract][Full Text] [Related]
45. An interpretable single-cell RNA sequencing data clustering method based on latent Dirichlet allocation. Yang Q; Xu Z; Zhou W; Wang P; Jiang Q; Juan L Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37225419 [TBL] [Abstract][Full Text] [Related]
46. Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data. Wu W; Ma X IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):566-575. PubMed ID: 35316190 [TBL] [Abstract][Full Text] [Related]
47. Evaluating the performance of dropout imputation and clustering methods for single-cell RNA sequencing data. Xu J; Cui L; Zhuang J; Meng Y; Bing P; He B; Tian G; Kwok Pui C; Wu T; Wang B; Yang J Comput Biol Med; 2022 Jul; 146():105697. PubMed ID: 35697529 [TBL] [Abstract][Full Text] [Related]
48. Single-cell data clustering based on sparse optimization and low-rank matrix factorization. Hu Y; Li B; Chen F; Qu K G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33787873 [TBL] [Abstract][Full Text] [Related]
49. scTPC: a novel semisupervised deep clustering model for scRNA-seq data. Qiu Y; Yang L; Jiang H; Zou Q Bioinformatics; 2024 May; 40(5):. PubMed ID: 38684178 [TBL] [Abstract][Full Text] [Related]
50. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data. Cheng Y; Ma X Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138 [TBL] [Abstract][Full Text] [Related]
51. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks. Liu T; Jia C; Bi Y; Guo X; Zou Q; Li F Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39373051 [TBL] [Abstract][Full Text] [Related]
52. Spectral clustering of single cells using Siamese nerual network combined with improved affinity matrix. Jiang H; Huang Y; Li Q Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35419595 [TBL] [Abstract][Full Text] [Related]
53. A spectral clustering with self-weighted multiple kernel learning method for single-cell RNA-seq data. Qi R; Wu J; Guo F; Xu L; Zou Q Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33003206 [TBL] [Abstract][Full Text] [Related]
54. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation. Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924 [TBL] [Abstract][Full Text] [Related]
55. Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data. Wei N; Nie Y; Liu L; Zheng X; Wu HJ PLoS Comput Biol; 2022 Dec; 18(12):e1010753. PubMed ID: 36469543 [TBL] [Abstract][Full Text] [Related]
56. Denoising adaptive deep clustering with self-attention mechanism on single-cell sequencing data. Su Y; Lin R; Wang J; Tan D; Zheng C Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715275 [TBL] [Abstract][Full Text] [Related]
57. Clustering single-cell RNA sequencing data via iterative smoothing and self-supervised discriminative embedding. Xie J; Ruan S; Tu M; Yuan Z; Hu J; Li H; Li S Oncogene; 2024 Jul; 43(29):2279-2292. PubMed ID: 38834657 [TBL] [Abstract][Full Text] [Related]
58. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning. Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817 [TBL] [Abstract][Full Text] [Related]
59. Effectively Clustering Single Cell RNA Sequencing Data by Sparse Representation. Li RY; Wang Z; Guan J; Zhou S IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3425-3434. PubMed ID: 34788219 [TBL] [Abstract][Full Text] [Related]
60. Graph-Regularized Non-Negative Matrix Factorization for Single-Cell Clustering in scRNA-Seq Data. Jiang H; Wang MN; Huang YA; Huang Y IEEE J Biomed Health Inform; 2024 Aug; 28(8):4986-4994. PubMed ID: 38787664 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]