These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37027707)

  • 1. Evaluating Augmented Reality Landmark Cues and Frame of Reference Displays with Virtual Reality.
    Zhao Y; Stefanucci J; Creem-Regehr S; Bodenheimer B
    IEEE Trans Vis Comput Graph; 2023 Feb; PP():. PubMed ID: 37027707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-Related Differences in Associative Learning of Landmarks and Heading Directions in a Virtual Navigation Task.
    Zhong JY; Moffat SD
    Front Aging Neurosci; 2016; 8():122. PubMed ID: 27303290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landmarks: A solution for spatial navigation and memory experiments in virtual reality.
    Starrett MJ; McAvan AS; Huffman DJ; Stokes JD; Kyle CT; Smuda DN; Kolarik BS; Laczko J; Ekstrom AD
    Behav Res Methods; 2021 Jun; 53(3):1046-1059. PubMed ID: 32939682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Much of What We Learn in Virtual Reality Transfers to Real-World Navigation?
    Hejtmanek L; Starrett M; Ferrer E; Ekstrom AD
    Multisens Res; 2020 Mar; 33(4-5):479-503. PubMed ID: 31972540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame.
    Shine JP; Valdés-Herrera JP; Hegarty M; Wolbers T
    J Neurosci; 2016 Jun; 36(24):6371-81. PubMed ID: 27307227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the Quality of Spatial Learning via Virtual Global Landmarks.
    Liu J; Singh AK; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2418-2425. PubMed ID: 35981074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Virtual Reality System for Auditory Tasks in Head-fixed Mice.
    Gao S; Webb J; Mridha Z; Banta A; Kemere C; McGinley M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2925-2928. PubMed ID: 33018619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [IMMERSIVE SURGICAL NAVIGATION USING SPATIAL INTERACTIVE VIRTUAL REALITY AND HOLOGRAPHIC AUGMENTED REALITY].
    Sugimoto M; Shiga Y; Abe M; Kameyama S; Azuma T
    Nihon Geka Gakkai Zasshi; 2016 Sep; 117(5):387-94. PubMed ID: 30169000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation of visual landmarks in retrosplenial cortex.
    Fischer LF; Mojica Soto-Albors R; Buck F; Harnett MT
    Elife; 2020 Mar; 9():. PubMed ID: 32154781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesions of the dorsal tegmental nuclei disrupt control of navigation by distal landmarks in cued, directional, and place variants of the Morris water task.
    Clark BJ; Rice JP; Akers KG; Candelaria-Cook FT; Taube JS; Hamilton DA
    Behav Neurosci; 2013 Aug; 127(4):566-81. PubMed ID: 23731069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified Navigation Instructions for Spatial Navigation Assistance Systems Lead to Incidental Spatial Learning.
    Gramann K; Hoepner P; Karrer-Gauss K
    Front Psychol; 2017; 8():193. PubMed ID: 28243219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redesigning navigational aids using virtual global landmarks to improve spatial knowledge retrieval.
    Liu J; Singh AK; Wunderlich A; Gramann K; Lin CT
    NPJ Sci Learn; 2022 Jul; 7(1):17. PubMed ID: 35853945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding Home: Landmark Ambiguity in Human Navigation.
    Jetzschke S; Ernst MO; Froehlich J; Boeddeker N
    Front Behav Neurosci; 2017; 11():132. PubMed ID: 28769773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence consistent with the multiple-bearings hypothesis from human virtual landmark-based navigation.
    Forloines MR; Bodily KD; Sturz BR
    Front Psychol; 2015; 6():488. PubMed ID: 25972823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.
    Wegman J; Tyborowska A; Janzen G
    Hippocampus; 2014 Jul; 24(7):853-68. PubMed ID: 24706395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mirror in the sky: assessment of an augmented reality method for depicting navigational information.
    Reiner AJ; Hollands JG; Jamieson GA; Boustila S
    Ergonomics; 2020 May; 63(5):548-562. PubMed ID: 32200733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented Reality in Spine Surgery: A Narrative Review.
    Hersh A; Mahapatra S; Weber-Levine C; Awosika T; Theodore JN; Zakaria HM; Liu A; Witham TF; Theodore N
    HSS J; 2021 Oct; 17(3):351-358. PubMed ID: 34539277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of virtual and real registration technology based on augmented reality in a surgical navigation system.
    Chen L; Zhang F; Zhan W; Gan M; Sun L
    Biomed Eng Online; 2020 Jan; 19(1):1. PubMed ID: 31915014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability.
    Wenk N; Buetler KA; Penalver-Andres J; Müri RM; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Dec; 19(1):137. PubMed ID: 36494668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using virtual global landmark to improve incidental spatial learning.
    Liu J; Singh AK; Lin CT
    Sci Rep; 2022 Apr; 12(1):6744. PubMed ID: 35469001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.