These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 3702779)

  • 21. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues.
    Bolam DN; Hughes N; Virden R; Lakey JH; Hazlewood GP; Henrissat B; Braithwaite KL; Gilbert HJ
    Biochemistry; 1996 Dec; 35(50):16195-204. PubMed ID: 8973192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The mitogenic properties of Fusarium graminearum and Rhodococcus erythropolis enzymes].
    Fedorovskaia EA; Iakovenko SB; Kovalenko EA; Buglova TT; Pavlova IN
    Mikrobiol Zh (1978); 1990; 52(3):63-5. PubMed ID: 2215288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.
    Hogg D; Pell G; Dupree P; Goubet F; Martín-Orúe SM; Armand S; Gilbert HJ
    Biochem J; 2003 May; 371(Pt 3):1027-43. PubMed ID: 12523937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The development of a Bacillus subtilis 168 culture condition for enhanced and accelerated beta-mannanase production.
    el-Helow ER; Khattab AA
    Acta Microbiol Immunol Hung; 1996; 43(4):289-99. PubMed ID: 9147720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Affinity partitioning of a Cellulomonas fimi beta-mannanase with a mannan-binding module in galactomannan/starch aqueous two-phase system.
    Antov M; Anderson L; Andersson A; Tjerneld F; Stålbrand H
    J Chromatogr A; 2006 Aug; 1123(1):53-9. PubMed ID: 16797561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial mannanases: an overview of production and applications.
    Dhawan S; Kaur J
    Crit Rev Biotechnol; 2007; 27(4):197-216. PubMed ID: 18085462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial β-mannosidases and their industrial applications.
    Costa DAL; Filho EXF
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):535-547. PubMed ID: 30426153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Study of mannanase activity in different groups of microorganisms].
    Pavlova IN
    Mikrobiol Zh (1978); 1979; 41(2):115-9. PubMed ID: 572467
    [No Abstract]   [Full Text] [Related]  

  • 29. [Degradation of machine oil by nocardiform bacteria].
    Zviagintseva IS; Surovtseva EG; Poglazova MN; Ivoĭlov VS; Beliaev SS
    Mikrobiologiia; 2001; 70(3):321-8. PubMed ID: 11450453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insight into microbial mannosidases: a review.
    Chauhan PS; Gupta N
    Crit Rev Biotechnol; 2017 Mar; 37(2):190-201. PubMed ID: 26745578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Purification and characterization of an endo-beta-1, 4-mannanase from Bacillus subtilis BM9602].
    Li W; Dong Z; Cui F
    Wei Sheng Wu Xue Bao; 2000 Aug; 40(4):420-4. PubMed ID: 12548965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mannan-hydrolyzing enzymes of yeasts and yeast-like organism.
    Augustín J; Zemek J; Kuniak L; Kocková-Kratochvílová A
    Folia Microbiol (Praha); 1980; 25(4):301-5. PubMed ID: 6998838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation.
    Fialová A; Cejková A; Masák J; Jirků V
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):155-8. PubMed ID: 15296151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrile hydrolysis activity of Rhodococcus erythropolis NCIMB 11540 whole cells.
    Vink MK; Wijtmans R; Reisinger C; van den Berg RJ; Schortinghuis CA; Schwab H; Schoemaker HE; Rutjes FP
    Biotechnol J; 2006 May; 1(5):569-73. PubMed ID: 16892293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Assimilation of propane and properties of propan monooxygenase from Rhodococcus erythropolis 3/89].
    Kulikova AK; Bezborodov AM
    Prikl Biokhim Mikrobiol; 2001; 37(2):186-9. PubMed ID: 11357423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure and characterization of a modular endo-beta-1,4-mannanase from Cellulomonas fimi.
    Le Nours J; Anderson L; Stoll D; Stålbrand H; Lo Leggio L
    Biochemistry; 2005 Sep; 44(38):12700-8. PubMed ID: 16171384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and characterization of an intracellular serine protease from Rhodococcus erythropolis.
    Shannon JD; Bond JS; Bradley SG
    Arch Biochem Biophys; 1982 Nov; 219(1):80-8. PubMed ID: 6758705
    [No Abstract]   [Full Text] [Related]  

  • 38. Enzymatic asymmetric synthesis of alpha-methyl arylalkylamines and alpha-methyl arylalkylalcohols by arylalkyl acylamidases.
    Ogawa J; Shimizu S; Yamada H
    Bioorg Med Chem; 1994 Jun; 2(6):429-32. PubMed ID: 8000864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screening and identification of endomannanase-producing microfungi from hypersaline environments.
    Mudau MM; Setati ME
    Curr Microbiol; 2006 Jun; 52(6):477-81. PubMed ID: 16732459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical and Physical Characterization of Interfacial-Active Lipids from Rhodococcus erythropolis Grown on n-Alkanes.
    Kretschmer A; Bock H; Wagner F
    Appl Environ Microbiol; 1982 Oct; 44(4):864-70. PubMed ID: 16346110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.