BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37027821)

  • 1. Clean Production of l-Alanyl-l-glutamine by an Efficient Yeast Biocatalyst Expressing α-Amino Acid Ester Acyltransferase without N-Glycosylation.
    Li Y; Du C; Jing Z; Zhu J; Fan C; Jiang Y; Yuan W
    J Agric Food Chem; 2023 Apr; 71(16):6398-6405. PubMed ID: 37027821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of L-alanyl-L-glutamine by immobilized Pichia pastoris GS115 expressing α-amino acid ester acyltransferase.
    Li YM; Gao JQ; Pei XZ; Du C; Fan C; Yuan WJ; Bai FW
    Microb Cell Fact; 2019 Feb; 18(1):27. PubMed ID: 30711013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of l-alanyl-l-glutamine by recycling E. coli expressing α-amino acid ester acyltransferase.
    Li Y; Yuan W; Gao J; Fan C; Wu W; Bai F
    Bioresour Technol; 2017 Dec; 245(Pt B):1603-1609. PubMed ID: 28624247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic production of L-alanyl-L-glutamine by recombinant E. coli expressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis.
    Hirao Y; Mihara Y; Kira I; Abe I; Yokozeki K
    Biosci Biotechnol Biochem; 2013; 77(3):618-23. PubMed ID: 23470770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of L-alanyl-L-glutamine by immobilized Escherichia coli expressing amino acid ester acyltransferase.
    Pei X; Li Y; Du C; Yuan T; Fan C; Hong H; Yuan W
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6967-6976. PubMed ID: 32594215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex gene knockout raises Ala-Gln production by Escherichia coli expressing amino acid ester acyltransferase.
    Jing Z; Xu J; Liu J; Du C; Qi J; Fan C; Li Y; Yuan W
    Appl Microbiol Biotechnol; 2023 Jun; 107(11):3523-3533. PubMed ID: 37145161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Expression, purification, characterization and application of α-amino acid ester acyltransferase from recombinant Escherichia coli].
    Liu P; Lu Q; Hu X; Hou X; Zhang H
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1169-1177. PubMed ID: 30058315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of protein N-terminal amidase in enzymatic synthesis of dipeptides containing acidic amino acids specifically at the N-terminus.
    Arai T; Noguchi A; Takano E; Kino K
    J Biosci Bioeng; 2013 Apr; 115(4):382-7. PubMed ID: 23218487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentative production of L-alanyl-L-glutamine by a metabolically engineered Escherichia coli strain expressing L-amino acid alpha-ligase.
    Tabata K; Hashimoto S
    Appl Environ Microbiol; 2007 Oct; 73(20):6378-85. PubMed ID: 17720844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation kinetics of L-alanyl-L-glutamine and its derivatives in aqueous solution.
    Arii K; Kai T; Kokuba Y
    Eur J Pharm Sci; 1999 Jan; 7(2):107-12. PubMed ID: 9845788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine.
    Zhu J; Yang W; Wang B; Liu Q; Zhong X; Gao Q; Liu J; Huang J; Lin B; Tao Y
    Microb Cell Fact; 2020 Jun; 19(1):129. PubMed ID: 32527330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Immobilizing engineered
    Zhang Y; Cheng T; Zhao F; Yi Y; Li Q; Lu Z; Wu M; Wang T; Liu X
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):1131-1141. PubMed ID: 36994577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress-induced intracellular glutamine depletion. The potential use of glutamine-containing peptides in parenteral nutrition.
    Fürst P; Albers S; Stehle P
    Beitr Infusionther Klin Ernahr; 1987; 17():117-36. PubMed ID: 3120690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamine-based dipeptides are utilized in mammalian cell culture by extracellular hydrolysis catalyzed by a specific peptidase.
    Christie A; Butler M
    J Biotechnol; 1994 Nov; 37(3):277-90. PubMed ID: 7765576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetically controlled enzymatic synthesis of dipeptide precursor of L-alanyl-L-glutamine.
    Wang M; Qi W; Yu Q; Su R; He Z
    Biotechnol Appl Biochem; 2011; 58(6):449-55. PubMed ID: 22172107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and application of dipeptides; current status and perspectives.
    Yagasaki M; Hashimoto S
    Appl Microbiol Biotechnol; 2008 Nov; 81(1):13-22. PubMed ID: 18795289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis, Characterization, and Bioactivity of L-Alanyl-L-tyrosine in Promoting Melanin Synthesis.
    Fan Y; Wei J; Li Z; Yang J; Hu X; Zhang H
    Appl Biochem Biotechnol; 2023 Sep; ():. PubMed ID: 37713063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of multidrug-efflux transporter genes on dipeptide resistance and overproduction in Escherichia coli.
    Hayashi M; Tabata K; Yagasaki M; Yonetani Y
    FEMS Microbiol Lett; 2010 Mar; 304(1):12-9. PubMed ID: 20067529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of molecular structure and plasma hydrolysis on the metabolism of glutamine-containing dipeptides in humans.
    Hübl W; Druml W; Langer K; Lochs H
    Metabolism; 1989 Aug; 38(8 Suppl 1):59-62. PubMed ID: 2761422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of liver and kidney for the utilization of glutamine-containing dipeptides in man.
    Hübl W; Druml W; Roth E; Lochs H
    Metabolism; 1994 Sep; 43(9):1104-7. PubMed ID: 8084285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.