These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37027841)

  • 21. Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction.
    Socoliuc A; Bennewitz R; Gnecco E; Meyer E
    Phys Rev Lett; 2004 Apr; 92(13):134301. PubMed ID: 15089616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 100 km wear-free sliding achieved by microscale superlubric graphite/DLC heterojunctions under ambient conditions.
    Peng D; Wang J; Jiang H; Zhao S; Wu Z; Tian K; Ma M; Zheng Q
    Natl Sci Rev; 2022 Jan; 9(1):nwab109. PubMed ID: 35070329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superlubric sliding of graphene nanoflakes on graphene.
    Feng X; Kwon S; Park JY; Salmeron M
    ACS Nano; 2013 Feb; 7(2):1718-24. PubMed ID: 23327483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust Superlubricity and Moiré Lattice's Size Dependence on Friction between Graphdiyne Layers.
    Ruan X; Shi J; Wang X; Wang WY; Fan X; Zhou F
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40901-40908. PubMed ID: 34404203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of surface roughness in superlubricity.
    Tartaglino U; Samoilov VN; Persson BN
    J Phys Condens Matter; 2006 May; 18(17):4143-60. PubMed ID: 21690770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.
    Sun J; Zhang Y; Lu Z; Xue Q; Wang L
    Phys Chem Chem Phys; 2017 May; 19(18):11026-11031. PubMed ID: 28397884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Superlubricity Based on Crystalline Materials.
    Song Y; Qu C; Ma M; Zheng Q
    Small; 2020 Apr; 16(15):e1903018. PubMed ID: 31670482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible Superlubricity Unveiled in Sidewinding Motion of Individual Polymeric Chains.
    Vilhena JG; Pawlak R; D'Astolfo P; Liu X; Gnecco E; Kisiel M; Glatzel T; Pérez R; Häner R; Decurtins S; Baratoff A; Prampolini G; Liu SX; Meyer E
    Phys Rev Lett; 2022 May; 128(21):216102. PubMed ID: 35687435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.
    Li J; Gao T; Luo J
    Adv Sci (Weinh); 2018 Mar; 5(3):1700616. PubMed ID: 29593965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Moiré-Tile Manipulation-Induced Friction Switch of Graphene on a Platinum Surface.
    Liu Z; Vilhena JG; Hinaut A; Scherb S; Luo F; Zhang J; Glatzel T; Gnecco E; Meyer E
    Nano Lett; 2023 May; 23(10):4693-4697. PubMed ID: 36917620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superlubricity Enabled by Pressure-Induced Friction Collapse.
    Sun J; Zhang Y; Lu Z; Li Q; Xue Q; Du S; Pu J; Wang L
    J Phys Chem Lett; 2018 May; 9(10):2554-2559. PubMed ID: 29714483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl-Tomlinson model and the simulation of vibration-induced friction reduction.
    van Spengen WM; Turq V; Frenken JW
    Beilstein J Nanotechnol; 2010; 1():163-71. PubMed ID: 21977407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Friction properties of black phosphorus: a first-principles study.
    Wang C; He Q; Guo P; Qi H; Su J; Chen W; Tang C; Jia Y
    Nanotechnology; 2023 Apr; 34(27):. PubMed ID: 37015217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superlow Friction of Graphite Induced by the Self-Assembly of Sodium Dodecyl Sulfate Molecular Layers.
    Li J; Luo J
    Langmuir; 2017 Nov; 33(44):12596-12601. PubMed ID: 29037037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust Superlubric Interface across Nano- and Micro-Scales Enabled by Fluoroalkylsilane Self-Assembled Monolayers and Atomically Thin Graphene.
    Zhao X; Peng Y; Cao X; Yu K; Lang H
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56704-56717. PubMed ID: 34792342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fully automatic transfer and measurement system for structural superlubric materials.
    Chen L; Lin C; Shi D; Huang X; Zheng Q; Nie J; Ma M
    Nat Commun; 2023 Oct; 14(1):6323. PubMed ID: 37816725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust microscale structural superlubricity between graphite and nanostructured surface.
    Huang X; Li T; Wang J; Xia K; Tan Z; Peng D; Xiang X; Liu B; Ma M; Zheng Q
    Nat Commun; 2023 May; 14(1):2931. PubMed ID: 37217500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superlubricity between Graphite Layers in Ultrahigh Vacuum.
    Liu Y; Wang K; Xu Q; Zhang J; Hu Y; Ma T; Zheng Q; Luo J
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43167-43172. PubMed ID: 32840104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.