These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37027962)
1. Using uniaxial tensile testing to evaluate the biomechanical properties of bladder tissue after spinal cord injury in rat model. Hu JC; Osborn SL; Sanchez PC; Xu W; Christiansen BA; Kurzrock EA J Biomech; 2023 May; 152():111571. PubMed ID: 37027962 [TBL] [Abstract][Full Text] [Related]
3. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury. Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866 [TBL] [Abstract][Full Text] [Related]
4. Passive biaxial mechanical properties of the rat bladder wall after spinal cord injury. Gloeckner DC; Sacks MS; Fraser MO; Somogyi GT; de Groat WC; Chancellor MB J Urol; 2002 May; 167(5):2247-52. PubMed ID: 11956487 [TBL] [Abstract][Full Text] [Related]
5. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940 [TBL] [Abstract][Full Text] [Related]
6. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats. Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107 [TBL] [Abstract][Full Text] [Related]
7. Dynamic changes in mechanical properties of the adult rat spinal cord after injury. Jin C; Zhu R; Wang ZW; Li Y; Ni HF; Xu ML; Zheng LD; Cao YT; Yang YT; Xu W; Wang JJ; Xie N; Cheng LM Acta Biomater; 2023 Jan; 155():436-448. PubMed ID: 36435440 [TBL] [Abstract][Full Text] [Related]
8. Chronic Stimulation Improves Motor Performance in an Ambulatory Rat Model of Spinal Cord Injury. Borrell JA; Gattozzi D; Krizsan-Agbas D; Jaeschke MW; Nudo RJ; Frost SB J Integr Neurosci; 2023 May; 22(3):71. PubMed ID: 37258431 [TBL] [Abstract][Full Text] [Related]
9. Changes in the biaxial viscoelastic response of the urinary bladder following spinal cord injury. Nagatomi J; Gloeckner DC; Chancellor MB; DeGroat WC; Sacks MS Ann Biomed Eng; 2004 Oct; 32(10):1409-19. PubMed ID: 15535058 [TBL] [Abstract][Full Text] [Related]
10. Melatonin improves functional outcome via inhibition of matrix metalloproteinases-9 after photothrombotic spinal cord injury in rats. Piao MS; Lee JK; Jang JW; Hur H; Lee SS; Xiao L; Kim HS Acta Neurochir (Wien); 2014 Nov; 156(11):2173-82. PubMed ID: 24879621 [TBL] [Abstract][Full Text] [Related]
11. [Effect of moxibustion at "oppositely-located points" on neurogenic bladder after spinal cord injury and endoplasmic reticulum stress pathway in rats]. Wei W; Yang ZX; Wang TY; Cui TT; Chen JS; Zhang C; Li N; Ren LQ Zhongguo Zhen Jiu; 2022 Apr; 42(4):413-8. PubMed ID: 35403401 [TBL] [Abstract][Full Text] [Related]
12. Remodeling of extracellular matrix in the urinary bladder of paraplegic rats results in increased compliance and delayed fiber recruitment 16 weeks after spinal cord injury. Tuttle TG; Lujan HL; Tykocki NR; DiCarlo SE; Roccabianca S Acta Biomater; 2022 Mar; 141():280-289. PubMed ID: 35032719 [TBL] [Abstract][Full Text] [Related]
13. Lentivirus-mediated silencing of the CTGF gene suppresses the formation of glial scar tissue in a rat model of spinal cord injury. Wang Y; Kong QJ; Sun JC; Yang Y; Wang HB; Zhang Q; Shi JG Spine J; 2018 Jan; 18(1):164-172. PubMed ID: 28089819 [TBL] [Abstract][Full Text] [Related]
14. Early molecular-level changes in rat bladder wall tissue following spinal cord injury. Nagatomi J; DeMiguel F; Torimoto K; Chancellor MB; Getzenberg RH; Sacks MS Biochem Biophys Res Commun; 2005 Sep; 334(4):1159-64. PubMed ID: 16038877 [TBL] [Abstract][Full Text] [Related]
15. Effects of Therapeutic Hypothermia on Apoptosis and Autophagy After Spinal Cord Injury in Rats. Seo JY; Kim YH; Kim JW; Kim SI; Ha KY Spine (Phila Pa 1976); 2015 Jun; 40(12):883-90. PubMed ID: 25705963 [TBL] [Abstract][Full Text] [Related]
17. Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-beta. Fang XQ; Fang M; Fan SW; Gu CL Chin Med J (Engl); 2009 Jul; 122(14):1631-5. PubMed ID: 19719963 [TBL] [Abstract][Full Text] [Related]
18. Administration of ONO-2506 suppresses neuropathic pain after spinal cord injury by inhibition of astrocytic activation. Ishiguro H; Kaito T; Hashimoto K; Kushioka J; Okada R; Tsukazaki H; Kodama J; Bal Z; Ukon Y; Takenaka S; Makino T; Sakai Y; Yoshikawa H Spine J; 2019 Aug; 19(8):1434-1442. PubMed ID: 30974239 [TBL] [Abstract][Full Text] [Related]
19. Altered distribution of interstitial cells and innervation in the rat urinary bladder following spinal cord injury. Johnston L; Cunningham RM; Young JS; Fry CH; McMurray G; Eccles R; McCloskey KD J Cell Mol Med; 2012 Jul; 16(7):1533-43. PubMed ID: 21883887 [TBL] [Abstract][Full Text] [Related]
20. Neurogenic bladder dysfunction does not correlate with astrocyte and microglia activation produced by graded force in a contusion-induced spinal cord injury. Munoz A Brain Res Bull; 2017 May; 131():18-24. PubMed ID: 28267560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]