BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37028002)

  • 21. Hemin/G-Quadruplex Horseradish Peroxidase-Mimicking DNAzyme: Principle and Biosensing Application.
    Alizadeh N; Salimi A; Hallaj R
    Adv Biochem Eng Biotechnol; 2020; 170():85-106. PubMed ID: 29143069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA-fueled target recycling-induced two-leg DNA walker for amplified electrochemical detection of nucleic acid.
    Wang K; Feng M; He MQ; Zhai FH; Dai Y; He RH; Yu YL
    Talanta; 2018 Oct; 188():685-690. PubMed ID: 30029432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategy of functional nucleic acids-mediated isothermal amplification for detection of foodborne microbial contaminants: A review.
    Zhou J; Wang TY; Lan Z; Yang HJ; Ye XJ; Min R; Wang ZH; Huang Q; Cao J; Gao YE; Wang WL; Sun XL; Zhang Y
    Food Res Int; 2023 Nov; 173(Pt 1):113286. PubMed ID: 37803599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amplified detection of DNA ligase and polynucleotide kinase/phosphatase on the basis of enrichment of catalytic G-quadruplex DNAzyme by rolling circle amplification.
    Jiang HX; Kong DM; Shen HX
    Biosens Bioelectron; 2014 May; 55():133-8. PubMed ID: 24370884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe.
    Ali MM; Li Y
    Angew Chem Int Ed Engl; 2009; 48(19):3512-5. PubMed ID: 19360817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Label-free and highly sensitive electrochemical detection of E. coli based on rolling circle amplifications coupled peroxidase-mimicking DNAzyme amplification.
    Guo Y; Wang Y; Liu S; Yu J; Wang H; Wang Y; Huang J
    Biosens Bioelectron; 2016 Jan; 75():315-9. PubMed ID: 26334590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies for highly sensitive biomarker detection by Rolling Circle Amplification of signals from nucleic acid composed sensors.
    Stougaard M; Juul S; Andersen FF; Knudsen BR
    Integr Biol (Camb); 2011 Oct; 3(10):982-92. PubMed ID: 21927767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplified synthesis of DNAzyme.
    Dong H; Wang C; Xiong Y; Lu H; Ju H; Zhang X
    Biosens Bioelectron; 2013 Mar; 41():348-53. PubMed ID: 22981413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes.
    Liu M; Chang D; Li Y
    Acc Chem Res; 2017 Sep; 50(9):2273-2283. PubMed ID: 28805376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aptamer-integrated nucleic acid circuits for biosensing: Classification, challenges and perspectives.
    Zhou X; Zhu Q; Yang Y
    Biosens Bioelectron; 2020 Oct; 165():112422. PubMed ID: 32729540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circular Nucleic Acids: Discovery, Functions and Applications.
    Li J; Mohammed-Elsabagh M; Paczkowski F; Li Y
    Chembiochem; 2020 Jun; 21(11):1547-1566. PubMed ID: 32176816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-ion dependent DNAzyme recycling amplification for sensitive and homogeneous immuno-proximity binding assay of α-fetoprotein biomarker.
    Zou M; Li D; Yuan R; Xiang Y
    Biosens Bioelectron; 2017 Jun; 92():624-629. PubMed ID: 27829562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proximity binding induced nucleic acid cascade amplification strategy for ultrasensitive homogeneous detection of PSA.
    Zhou H; Ding K; Li B; Wang H; Zhang N; Liu J
    Anal Chim Acta; 2021 Nov; 1186():339123. PubMed ID: 34756258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Universal Dynamic DNA Assembly-Programmed Surface Hybridization Effect for Single-Step, Reusable, and Amplified Electrochemical Nucleic Acid Biosensing.
    Liu S; Fang L; Wang Y; Wang L
    Anal Chem; 2017 Mar; 89(5):3108-3115. PubMed ID: 28194961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitive Small Molecule Aptasensing based on Hybridization Chain Reaction and CRISPR/Cas12a Using a Portable 3D-Printed Visualizer.
    Ma L; Liao D; Zhao Z; Kou J; Guo H; Xiong X; Man S
    ACS Sens; 2023 Mar; 8(3):1076-1084. PubMed ID: 36651835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosensing Amplification by Hybridization Chain Reaction on Phase-Sensitive Surface Plasmon Resonance.
    Yang CH; Wu TH; Chang CC; Lo HY; Liu HW; Huang NT; Lin CW
    Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33800935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein detection based on rolling circle amplification sensors.
    Shi H; Cui J; Sulemana H; Wang W; Gao L
    Luminescence; 2021 Jun; 36(4):842-848. PubMed ID: 33502072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas System: The Accelerator for the Development of Non-nucleic Acid Target Detection in Food Safety.
    Li Y; Zhao Z; Liu Y; Wang N; Man S; Ma L; Wang S
    J Agric Food Chem; 2023 Sep; 71(37):13577-13594. PubMed ID: 37656446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering DNAzyme cascade for signal transduction and amplification.
    Li J; Quan K; Yang Y; Yang X; Meng X; Huang J; Wang K
    Analyst; 2020 Mar; 145(5):1925-1932. PubMed ID: 31989119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Signal amplification and output of CRISPR/Cas-based biosensing systems: A review.
    Wang SY; Du YC; Wang DX; Ma JY; Tang AN; Kong DM
    Anal Chim Acta; 2021 Nov; 1185():338882. PubMed ID: 34711321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.