BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37028063)

  • 21. Fast and accurate reconstruction of human lung gas MRI with deep learning.
    Duan C; Deng H; Xiao S; Xie J; Li H; Sun X; Ma L; Lou X; Ye C; Zhou X
    Magn Reson Med; 2019 Dec; 82(6):2273-2285. PubMed ID: 31322298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstruction for plane-wave ultrasound imaging using modified U-Net-based beamformer.
    Nguon LS; Seo J; Seo K; Han Y; Park S
    Comput Med Imaging Graph; 2022 Jun; 98():102073. PubMed ID: 35561639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.
    Zhang Z; Liu J; Yang D; Kamilov US; Hugo GD
    Med Phys; 2023 Feb; 50(2):808-820. PubMed ID: 36412165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate and robust sparse-view angle CT image reconstruction using deep learning and prior image constrained compressed sensing (DL-PICCS).
    Zhang C; Li Y; Chen GH
    Med Phys; 2021 Oct; 48(10):5765-5781. PubMed ID: 34458996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multitask Deep Learning Reconstruction and Localization of Lesions in Limited Angle Diffuse Optical Tomography.
    Ben Yedder H; Cardoen B; Shokoufi M; Golnaraghi F; Hamarneh G
    IEEE Trans Med Imaging; 2022 Mar; 41(3):515-530. PubMed ID: 34606449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem.
    Häggström I; Schmidtlein CR; Campanella G; Fuchs TJ
    Med Image Anal; 2019 May; 54():253-262. PubMed ID: 30954852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PET scatter estimation using deep learning U-Net architecture.
    Laurent B; Bousse A; Merlin T; Nekolla S; Visvikis D
    Phys Med Biol; 2023 Mar; 68(6):. PubMed ID: 36240745
    [No Abstract]   [Full Text] [Related]  

  • 30. Image Reconstruction Using Deep Learning for Near-Infrared Optical Tomography: Generalization Assessment.
    Ackermann M; Jiang J; Russomanno E; Wolf M; Kalyanov A
    Adv Exp Med Biol; 2023; 1438():161-166. PubMed ID: 37845455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An encoder-decoder network for direct image reconstruction on sinograms of a long axial field of view PET.
    Ma R; Hu J; Sari H; Xue S; Mingels C; Viscione M; Kandarpa VSS; Li WB; Visvikis D; Qiu R; Rominger A; Li J; Shi K
    Eur J Nucl Med Mol Imaging; 2022 Nov; 49(13):4464-4477. PubMed ID: 35819497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Restoration of Full Data from Sparse Data in Low-Dose Chest Digital Tomosynthesis Using Deep Convolutional Neural Networks.
    Lee D; Kim HJ
    J Digit Imaging; 2019 Jun; 32(3):489-498. PubMed ID: 30238345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep-learning-based fast TOF-PET image reconstruction using direction information.
    Ote K; Hashimoto F
    Radiol Phys Technol; 2022 Mar; 15(1):72-82. PubMed ID: 35132574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unrolled-DOT: an interpretable deep network for diffuse optical tomography.
    Zhao Y; Raghuram A; Wang F; Kim SH; Hielscher A; Robinson JT; Veeraraghavan A
    J Biomed Opt; 2023 Mar; 28(3):036002. PubMed ID: 36908760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstruction of three-dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning.
    Montoya JC; Zhang C; Li Y; Li K; Chen GH
    Med Phys; 2022 Feb; 49(2):901-916. PubMed ID: 34908175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI.
    El-Rewaidy H; Neisius U; Mancio J; Kucukseymen S; Rodriguez J; Paskavitz A; Menze B; Nezafat R
    NMR Biomed; 2020 Jul; 33(7):e4312. PubMed ID: 32352197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound.
    Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A
    Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative performance assessment of deep learning based image steganography techniques.
    Himthani V; Dhaka VS; Kaur M; Rani G; Oza M; Lee HN
    Sci Rep; 2022 Oct; 12(1):16895. PubMed ID: 36207314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real time breast microwave radar image reconstruction using circular holography: a study of experimental feasibility.
    Flores-Tapia D; Pistorius S
    Med Phys; 2011 Oct; 38(10):5420-31. PubMed ID: 21992361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.