These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37028092)

  • 1. WVDL: Weighted Voting Deep Learning Model for Predicting RNA-Protein Binding Sites.
    Pan Z; Zhou S; Liu T; Liu C; Zang M; Wang Q
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3322-3328. PubMed ID: 37028092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MCNN: Multiple Convolutional Neural Networks for RNA-Protein Binding Sites Prediction.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1180-1187. PubMed ID: 35471886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. rBPDL:Predicting RNA-Binding Proteins Using Deep Learning.
    Niu M; Wu J; Zou Q; Liu Z; Xu L
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3668-3676. PubMed ID: 33780344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting RBP Binding Sites of RNA With High-Order Encoding Features and CNN-BLSTM Hybrid Model.
    Wang Z; Dai Q; Song J; Duan X; Yang H; Yang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2409-2419. PubMed ID: 34038367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepA-RBPBS: A hybrid convolution and recurrent neural network combined with attention mechanism for predicting RBP binding site.
    Du Z; Xiao X; Uversky VN
    J Biomol Struct Dyn; 2022 Jun; 40(9):4250-4258. PubMed ID: 33272122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network.
    Wang Z; Lei X
    Methods; 2022 Sep; 205():179-190. PubMed ID: 35810958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence.
    Deng L; Wu H; Liu X; Liu H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. R5hmCFDV: computational identification of RNA 5-hydroxymethylcytosine based on deep feature fusion and deep voting.
    Shi H; Zhang S; Li X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RLBind: a deep learning method to predict RNA-ligand binding sites.
    Wang K; Zhou R; Wu Y; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36398911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.