These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3702817)

  • 1. Correlation of microdosimetric measurements with relative biological effectiveness from clinical experience for two neutron therapy beams.
    Stinchcomb TG; Kuchnir FT; Myrianthopoulos LC; Horton JL; Roberts WK
    Med Phys; 1986; 13(2):201-6. PubMed ID: 3702817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams.
    Beach JL; Milavickas LR
    Med Phys; 1982; 9(1):52-9. PubMed ID: 6804771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdosimetric investigation of a fast neutron radiobiology facility utilising the d(4)-9Be reaction.
    Waker AJ; Maughan RL
    Phys Med Biol; 1986 Nov; 31(11):1281-90. PubMed ID: 3786413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microdosimetric characterization of a cyclotron-produced therapeutic neutron beam.
    Stafford PM; Horton JL; Almond PR
    Med Phys; 1987; 14(6):1015-9. PubMed ID: 3696065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdosimetry of a 42 MeV therapy neutron beam.
    Kliauga P; Horton J; Stafford P
    Int J Radiat Oncol Biol Phys; 1989 Mar; 16(3):845-8. PubMed ID: 2493437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium.
    Fidorra J; Booz J
    Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microdosimetric investigations on collimated fast neutron beams for radiation therapy: II. The problem of radiation quality and RBE.
    Booz J; Fidorra J
    Phys Med Biol; 1981 Jan; 26(1):43-56. PubMed ID: 6264510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Component evaluation of event size spectra for a clinical 14-MeV neutron beam.
    Schmidt R; Hess A
    Med Phys; 1988; 15(3):343-7. PubMed ID: 3405136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy.
    Mijnheer BJ
    Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An estimation of the relative biological effectiveness of 50 MV bremsstrahlung beams by microdosimetric techniques.
    Tilikidis A; Lind B; Näfstadius P; Brahme A
    Phys Med Biol; 1996 Jan; 41(1):55-69. PubMed ID: 8685258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.
    Hälg RA; Besserer J; Boschung M; Mayer S; Lomax AJ; Schneider U
    Phys Med Biol; 2014 May; 59(10):2457-68. PubMed ID: 24778349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniformity in dosimetry protocols for therapeutic applications of fast neutron beams.
    Mijnheer BJ; Wootton P; Williams JR; Eenmaa J; Parnell CJ
    Med Phys; 1987; 14(6):1020-6. PubMed ID: 3696066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial variation of radiation quality during moving beam therapy with 14 MeV [d(0.25)+T] neutrons.
    Herskind C; Loncol T; Höver KH
    Radiat Prot Dosimetry; 2002; 99(1-4):365-8. PubMed ID: 12194326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdosimetry of 10-15 MeV bremsstrahlung x rays.
    Amols HI; Zellmer DL
    Med Phys; 1984; 11(3):247-53. PubMed ID: 6429497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattered radiation from a neutron collimator.
    Attix FH; August LS; Shapiro P
    Med Phys; 1977; 4(2):118-22. PubMed ID: 850508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdosimetric study for secondary neutrons in phantom produced by a 290 MeV/nucleon carbon beam.
    Endo S; Tanaka K; Takada M; Onizuka Y; Miyahara N; Sato T; Ishikawa M; Maeda N; Hayabuchi N; Shizuma K; Hoshi M
    Med Phys; 2007 Sep; 34(9):3571-8. PubMed ID: 17926960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The clinical RBE and microdosimetric characterization of radiation quality in fast neutron therapy.
    Menzel HG; Wambersie A; Pihet P
    Acta Oncol; 1994; 33(3):251-9. PubMed ID: 8018353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.