These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 3702818)
1. Dosimetric considerations of d(15) + Be and p(26) + Be neutron beams from an isocentric cyclotron facility. Nair RP; Al-Siari A; Skaggs LS Med Phys; 1986; 13(2):207-10. PubMed ID: 3702818 [TBL] [Abstract][Full Text] [Related]
2. Comparison of neutron therapy beams produced by 50 MeV deuterons and 65 MeV protons on beryllium. Vynckier S; Pihet P; Octave-Prignot M; Meulders JP; Wambersie A Acta Radiol Oncol; 1982; 21(4):281-7. PubMed ID: 6293271 [TBL] [Abstract][Full Text] [Related]
3. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy. Mijnheer BJ Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808 [TBL] [Abstract][Full Text] [Related]
4. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron. Maughan RL; Yudelev M Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873 [TBL] [Abstract][Full Text] [Related]
5. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses. Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB Med Phys; 1977; 4(6):486-93. PubMed ID: 412047 [TBL] [Abstract][Full Text] [Related]
6. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics. Goodhead DT; Berry RJ; Bance DA; Gray P; Stedeford JB AJR Am J Roentgenol; 1977 Oct; 129(4):709-16. PubMed ID: 409249 [TBL] [Abstract][Full Text] [Related]
7. p(42)Be neutron therapy beams: dose rate and penetration as a function of target thickness and beam filtration. Rosenberg I; Awschalom M; Kuo TY; Tom JL Med Phys; 1981; 8(6):808-12. PubMed ID: 7322079 [TBL] [Abstract][Full Text] [Related]
8. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related]
9. [Neutron flow measurements in the d(14) + Be neutron radiation field from the cyclotron in Essen]. Pöller F; Sauerwein W; Rau D; Wagner FM; Olthoff K; Rassow J; Sack H Strahlenther Onkol; 1990 Jun; 166(6):426-9. PubMed ID: 2363106 [TBL] [Abstract][Full Text] [Related]
10. Validation of a pencil beam model-based treatment planning system for fast neutron therapy. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2003 Jan; 30(1):21-6. PubMed ID: 12557974 [TBL] [Abstract][Full Text] [Related]
11. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Chibani O; Ma CM Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965 [TBL] [Abstract][Full Text] [Related]
12. Development of the fast neutron standard using a Be({alpha},n) reaction at the National Metrology Institute of Japan. Shimoyama T; Harano H; Matsumoto T; Moriyama K; Hata T; Kudo K; Koyamada T; Uritani A Radiat Prot Dosimetry; 2007; 126(1-4):130-3. PubMed ID: 17513862 [TBL] [Abstract][Full Text] [Related]
13. Dosimetry of clinical neutron and proton beams: an overview of recommendations. Vynckier S; ; Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710 [TBL] [Abstract][Full Text] [Related]
14. Dosimetric properties of neutron beams from the D--D reaction in the energy range from 6.8 to 11.1 MeV. Waterman FM; Kuchnir FT; Skaggs LS; Hendry GO; Tom JL Phys Med Biol; 1978 May; 23(3):397-404. PubMed ID: 674357 [TBL] [Abstract][Full Text] [Related]
15. Improvement of a p(65)+Be neutron beam for therapy at Cyclone, Louvain-la-Neuve. Vynckier S; Pihet P; Flémal JM; Meulders JP; Wambersie A Phys Med Biol; 1983 Jun; 28(6):685-91. PubMed ID: 6410421 [TBL] [Abstract][Full Text] [Related]
16. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT). Capoulat ME; Minsky DM; Kreiner AJ Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544 [TBL] [Abstract][Full Text] [Related]
17. Dosimetric properties of p(90)+(Be + Ta) and p(101)+(Be + Al) neutrons. Harrison GH; Balcer-Kubiczek EK; Cox CR Med Phys; 1980; 7(4):348-51. PubMed ID: 6771513 [TBL] [Abstract][Full Text] [Related]
18. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator. Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720 [TBL] [Abstract][Full Text] [Related]
19. Design considerations for a computer controlled multileaf collimator for the Harper Hospital fast neutron therapy facility. Maughan RL; Yudelev M; Aref A; Chuba PJ; Forman J; Blosser EJ; Horste T Med Phys; 2002 Apr; 29(4):499-508. PubMed ID: 11991121 [TBL] [Abstract][Full Text] [Related]
20. [Principle of neutron teletherapy with the Soviet U-120 cyclotron]. Letov VN; Bel'skiĭ EM; Ievlev SM; Komov AI; Protasevich ET Med Radiol (Mosk); 1987 Jun; 32(6):27-33. PubMed ID: 3110536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]