BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3702818)

  • 1. Dosimetric considerations of d(15) + Be and p(26) + Be neutron beams from an isocentric cyclotron facility.
    Nair RP; Al-Siari A; Skaggs LS
    Med Phys; 1986; 13(2):207-10. PubMed ID: 3702818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of neutron therapy beams produced by 50 MeV deuterons and 65 MeV protons on beryllium.
    Vynckier S; Pihet P; Octave-Prignot M; Meulders JP; Wambersie A
    Acta Radiol Oncol; 1982; 21(4):281-7. PubMed ID: 6293271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy.
    Mijnheer BJ
    Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses.
    Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB
    Med Phys; 1977; 4(6):486-93. PubMed ID: 412047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics.
    Goodhead DT; Berry RJ; Bance DA; Gray P; Stedeford JB
    AJR Am J Roentgenol; 1977 Oct; 129(4):709-16. PubMed ID: 409249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p(42)Be neutron therapy beams: dose rate and penetration as a function of target thickness and beam filtration.
    Rosenberg I; Awschalom M; Kuo TY; Tom JL
    Med Phys; 1981; 8(6):808-12. PubMed ID: 7322079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Neutron flow measurements in the d(14) + Be neutron radiation field from the cyclotron in Essen].
    Pöller F; Sauerwein W; Rau D; Wagner FM; Olthoff K; Rassow J; Sack H
    Strahlenther Onkol; 1990 Jun; 166(6):426-9. PubMed ID: 2363106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a pencil beam model-based treatment planning system for fast neutron therapy.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2003 Jan; 30(1):21-6. PubMed ID: 12557974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the fast neutron standard using a Be({alpha},n) reaction at the National Metrology Institute of Japan.
    Shimoyama T; Harano H; Matsumoto T; Moriyama K; Hata T; Kudo K; Koyamada T; Uritani A
    Radiat Prot Dosimetry; 2007; 126(1-4):130-3. PubMed ID: 17513862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dosimetry of clinical neutron and proton beams: an overview of recommendations.
    Vynckier S; ;
    Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetric properties of neutron beams from the D--D reaction in the energy range from 6.8 to 11.1 MeV.
    Waterman FM; Kuchnir FT; Skaggs LS; Hendry GO; Tom JL
    Phys Med Biol; 1978 May; 23(3):397-404. PubMed ID: 674357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of a p(65)+Be neutron beam for therapy at Cyclone, Louvain-la-Neuve.
    Vynckier S; Pihet P; Flémal JM; Meulders JP; Wambersie A
    Phys Med Biol; 1983 Jun; 28(6):685-91. PubMed ID: 6410421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric properties of p(90)+(Be + Ta) and p(101)+(Be + Al) neutrons.
    Harrison GH; Balcer-Kubiczek EK; Cox CR
    Med Phys; 1980; 7(4):348-51. PubMed ID: 6771513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design considerations for a computer controlled multileaf collimator for the Harper Hospital fast neutron therapy facility.
    Maughan RL; Yudelev M; Aref A; Chuba PJ; Forman J; Blosser EJ; Horste T
    Med Phys; 2002 Apr; 29(4):499-508. PubMed ID: 11991121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Principle of neutron teletherapy with the Soviet U-120 cyclotron].
    Letov VN; Bel'skiĭ EM; Ievlev SM; Komov AI; Protasevich ET
    Med Radiol (Mosk); 1987 Jun; 32(6):27-33. PubMed ID: 3110536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.