These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37028362)

  • 1. The Classification and New Trends of Shared Control Strategies in Telerobotic Systems: A Survey.
    Li G; Li Q; Yang C; Su Y; Yuan Z; Wu X
    IEEE Trans Haptics; 2023; 16(2):118-133. PubMed ID: 37028362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A workload adaptive haptic shared control scheme for semi-autonomous driving.
    Luo R; Weng Y; Wang Y; Jayakumar P; Brudnak MJ; Paul V; Desaraju VR; Stein JL; Ersal T; Yang XJ
    Accid Anal Prev; 2021 Mar; 152():105968. PubMed ID: 33578217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-Robot Interface for Embedding Sliding Adjustable Autonomy Methods.
    Sfair Palar P; de Vargas Terres V; Schneider de Oliveira A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33096859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caring About the Human Operator: Haptic Shared Control for Enhanced User Comfort in Robotic Telemanipulation.
    Rahal R; Matarese G; Gabiccini M; Artoni A; Prattichizzo D; Giordano PR; Pacchierotti C
    IEEE Trans Haptics; 2020; 13(1):197-203. PubMed ID: 31995500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haptic Teleoperation of UAVs Through Control Barrier Functions.
    Zhang D; Yang G; Khurshid RP
    IEEE Trans Haptics; 2020; 13(1):109-115. PubMed ID: 31940555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Haptic Shared Autonomy With Partial Orientation Regulation for DoF Deficiency in Remote Side.
    Li G; Caponetto F; Wu X; Sarakoglou I; Tsagarakis NG
    IEEE Trans Haptics; 2023; 16(1):86-95. PubMed ID: 37030691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A task-specific analysis of the benefit of haptic shared control during telemanipulation.
    Boessenkool H; Abbink DA; Heemskerk CJ; van der Helm FC; Wildenbeest JG
    IEEE Trans Haptics; 2013; 6(1):2-12. PubMed ID: 24808263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Relationships of Human-Cobot Interaction Fluency with Job Performance and Job Satisfaction among Cobot Operators-The Moderating Role of Workload.
    Paliga M
    Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36982018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haptic Feedback Perception and Learning With Cable-Driven Guidance in Exosuit Teleoperation of a Simulated Drone.
    Rognon C; Ramachandran V; Wu AR; Ijspeert AJ; Floreano D
    IEEE Trans Haptics; 2019; 12(3):375-385. PubMed ID: 31251196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Confidence-Based Shared Control Strategy for the Smart Tissue Autonomous Robot (STAR).
    Saeidi H; Opfermann JD; Kam M; Raghunathan S; Leonard S; Krieger A
    Rep U S; 2018 Oct; 2018():1268-1275. PubMed ID: 31475075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Human Steering Behavior in Haptic Shared Control of Autonomy-Enabled Unmanned Ground Vehicles.
    Li C; Cole M; Jayakumar P; Ersal T
    Hum Factors; 2024 Apr; 66(4):1235-1248. PubMed ID: 36205244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open Issues in Evolutionary Robotics.
    Silva F; Duarte M; Correia L; Oliveira SM; Christensen AL
    Evol Comput; 2016; 24(2):205-36. PubMed ID: 26581015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Trial-by-Trial Adaptation on Conflicts in Haptic Shared Control for Free-Air Teleoperation Tasks.
    de Jonge AW; Wildenbeest JGW; Boessenkool H; Abbink DA
    IEEE Trans Haptics; 2016; 9(1):111-120. PubMed ID: 26357407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study of personalized speed adaptation method based on mental state for teleoperated robots.
    Zhang T; Zhang X; Lu Z; Zhang Y; Jiang Z; Zhang Y
    Front Neurosci; 2022; 16():976437. PubMed ID: 36117631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of two adjustable-autonomy models on the scalability of single-human/multiple-robot teams for exploration missions.
    Valero-Gomez A; de la Puente P; Hernando M
    Hum Factors; 2011 Dec; 53(6):703-16. PubMed ID: 22235531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception of Tactile Directionality via Artificial Fingerpad Deformation and Convolutional Neural Networks.
    Gutierrez K; Santos VJ
    IEEE Trans Haptics; 2020; 13(4):831-839. PubMed ID: 32092014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward versatile cooperative surgical robotics: a review and future challenges.
    Schleer P; Drobinsky S; de la Fuente M; Radermacher K
    Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1673-1686. PubMed ID: 30830511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biology and bioinspiration of soft robotics: Actuation, sensing, and system integration.
    Ren L; Li B; Wei G; Wang K; Song Z; Wei Y; Ren L; Qingping Liu
    iScience; 2021 Sep; 24(9):103075. PubMed ID: 34568796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-Augmented Haptic Telemanipulation: Concept, Retrospective Overview, and Current Use Cases.
    Hulin T; Panzirsch M; Singh H; Coelho A; Balachandran R; Pereira A; Weber BM; Bechtel N; Riecke C; Brunner B; Lii NY; Klodmann J; Hellings A; Hagmann K; Quere G; Bauer AS; Sierotowicz M; Lampariello R; Vogel J; Dietrich A; Leidner D; Ott C; Hirzinger G; Albu-Schäffer A
    Front Robot AI; 2021; 8():611251. PubMed ID: 34179105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of haptic feedback for the integration of intentions in shared task execution.
    Groten R; Feth D; Klatzky RL; Peer A
    IEEE Trans Haptics; 2013; 6(1):94-105. PubMed ID: 24808271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.