BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37028381)

  • 1. Continual Learning of Generative Models With Limited Data: From Wasserstein-1 Barycenter to Adaptive Coalescence.
    Dedeoglu M; Lin S; Zhang Z; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising.
    Gong Y; Shan H; Teng Y; Tu N; Li M; Liang G; Wang G; Wang S
    IEEE Trans Radiat Plasma Med Sci; 2021 Mar; 5(2):213-223. PubMed ID: 35402757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pesticide detection combining the Wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy.
    Yang R; Li Y; Qin B; Zhao D; Gan Y; Zheng J
    RSC Adv; 2022 Jan; 12(3):1769-1776. PubMed ID: 35425184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of near-infrared spectroscopy with Wasserstein generative adversarial networks for rapidly detecting raw material quality for formula products.
    Xin X; Jia J; Pang S; Hu R; Gong H; Gao X; Ding X
    Opt Express; 2024 Feb; 32(4):5529-5549. PubMed ID: 38439277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rectified Wasserstein Generative Adversarial Networks for Perceptual Image Restoration.
    Ma H; Liu D; Wu F
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3648-3663. PubMed ID: 35731773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive Wasserstein Barycenters of Persistence Diagrams.
    Vidal J; Budin J; Tierny J
    IEEE Trans Vis Comput Graph; 2019 Aug; ():. PubMed ID: 31403427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmentation of FTIR spectral datasets using Wasserstein generative adversarial networks for cancer liquid biopsies.
    McHardy RG; Antoniou G; Conn JJA; Baker MJ; Palmer DS
    Analyst; 2023 Aug; 148(16):3860-3869. PubMed ID: 37435822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network.
    Ran M; Hu J; Chen Y; Chen H; Sun H; Zhou J; Zhang Y
    Med Image Anal; 2019 Jul; 55():165-180. PubMed ID: 31085444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer diagnosis using generative adversarial networks based on deep learning from imbalanced data.
    Xiao Y; Wu J; Lin Z
    Comput Biol Med; 2021 Aug; 135():104540. PubMed ID: 34153791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering Analysis via Deep Generative Models With Mixture Models.
    Yang L; Fan W; Bouguila N
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):340-350. PubMed ID: 33048769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung Cancer Segmentation With Transfer Learning: Usefulness of a Pretrained Model Constructed From an Artificial Dataset Generated Using a Generative Adversarial Network.
    Nishio M; Fujimoto K; Matsuo H; Muramatsu C; Sakamoto R; Fujita H
    Front Artif Intell; 2021; 4():694815. PubMed ID: 34337394
    [No Abstract]   [Full Text] [Related]  

  • 13. Conditional Wasserstein generative adversarial networks applied to acoustic metamaterial design.
    Lai P; Amirkulova F; Gerstoft P
    J Acoust Soc Am; 2021 Dec; 150(6):4362. PubMed ID: 34972305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wasserstein Dictionaries of Persistence Diagrams.
    Sisouk K; Delon J; Tierny J
    IEEE Trans Vis Comput Graph; 2024 Feb; 30(2):1638-1651. PubMed ID: 37930922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network.
    Wang G; Hu X
    Comput Biol Med; 2021 Aug; 135():104625. PubMed ID: 34246157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning brain representation using recurrent Wasserstein generative adversarial net.
    Qiang N; Dong Q; Liang H; Li J; Zhang S; Zhang C; Ge B; Sun Y; Gao J; Liu T; Yue H; Zhao S
    Comput Methods Programs Biomed; 2022 Aug; 223():106979. PubMed ID: 35792364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisource single-cell data integration by MAW barycenter for Gaussian mixture models.
    Lin L; Shi W; Ye J; Li J
    Biometrics; 2023 Jun; 79(2):866-877. PubMed ID: 35220585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synthesis of high-energy CT images from low-energy CT images using an improved cycle generative adversarial network.
    Zhou H; Liu X; Wang H; Chen Q; Wang R; Pang ZF; Zhang Y; Hu Z
    Quant Imaging Med Surg; 2022 Jan; 12(1):28-42. PubMed ID: 34993058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wasserstein Generative Adversarial Networks Based Differential Privacy Metaverse Data Sharing.
    Liu H; Xu D; Tian Y; Peng C; Wu Z; Wang Z
    IEEE J Biomed Health Inform; 2023 Jun; PP():. PubMed ID: 37327092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.