BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37028528)

  • 1. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae.
    Liu T; Sun L; Zhang C; Liu Y; Li J; Du G; Lv X; Liu L
    Bioresour Technol; 2023 Jul; 379():129023. PubMed ID: 37028528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P; Luo R; Li Y; Chen X
    Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH; Kwon EY; Kim YH; Hahn JS
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient D-lactic acid production.
    Mitsui R; Yamada R; Matsumoto T; Yoshihara S; Tokumoto H; Ogino H
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9147-9158. PubMed ID: 32960291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. l-Lactic Acid Production via Sustainable Neutralizer-Free Route by Engineering Acid-Tolerant Yeast
    Zhang B; Li R; Yu L; Wu C; Liu Z; Bai F; Yu B; Wang L
    J Agric Food Chem; 2023 Jul; 71(29):11131-11140. PubMed ID: 37439413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Synthesis of Limonene in
    Kong X; Wu Y; Yu W; Liu Y; Li J; Du G; Lv X; Liu L
    J Agric Food Chem; 2023 May; 71(20):7752-7764. PubMed ID: 37189018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY; Kang CD; Lee SH; Park YK; Cho KM
    Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
    Zhao Y; Zuo F; Shu Q; Yang X; Deng Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield.
    Watcharawipas A; Sae-Tang K; Sansatchanon K; Sudying P; Boonchoo K; Tanapongpipat S; Kocharin K; Runguphan W
    FEMS Yeast Res; 2021 Apr; 21(4):. PubMed ID: 33856451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering
    Wang J; Li Y; Jiang W; Hu J; Gu Z; Xu S; Zhang L; Ding Z; Chen W; Shi G
    J Agric Food Chem; 2023 Jun; 71(25):9804-9814. PubMed ID: 37311098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.
    de Lima PB; Mulder KC; Melo NT; Carvalho LS; Menino GS; Mulinari E; de Castro VH; Dos Reis TF; Goldman GH; Magalhães BS; Parachin NS
    Microb Cell Fact; 2016 Sep; 15(1):158. PubMed ID: 27634467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous production of levopimaric acid in Saccharomyces cerevisiae.
    Liu T; Zhang C; Lu W
    Microb Cell Fact; 2018 Jul; 17(1):114. PubMed ID: 30021574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae.
    Sun L; Zhang Q; Kong X; Liu Y; Li J; Du G; Lv X; Ledesma-Amaro R; Chen J; Liu L
    Bioresour Technol; 2023 Feb; 370():128580. PubMed ID: 36608859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH.
    Xi Y; Xu H; Zhan T; Qin Y; Fan F; Zhang X
    Metab Eng; 2023 Jan; 75():170-180. PubMed ID: 36566973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.