These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 37028659)
1. Algal biomass mapping of eutrophic lakes using a machine learning approach with MODIS images. Lai L; Zhang Y; Cao Z; Liu Z; Yang Q Sci Total Environ; 2023 Jul; 880():163357. PubMed ID: 37028659 [TBL] [Abstract][Full Text] [Related]
2. Satellite mapping reveals phytoplankton biomass's spatio-temporal dynamics and responses to environmental factors in a eutrophic inland lake. Lai L; Zhang Y; Han T; Zhang M; Cao Z; Liu Z; Yang Q; Chen X J Environ Manage; 2024 Jun; 360():121134. PubMed ID: 38749137 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of phytoplankton to climatic factors in a large shallow lake revealed by column-integrated algal biomass from long-term satellite observations. Zhang Y; Hu M; Shi K; Zhang M; Han T; Lai L; Zhan P Water Res; 2021 Dec; 207():117786. PubMed ID: 34731665 [TBL] [Abstract][Full Text] [Related]
4. Optimized remote sensing estimation of the lake algal biomass by considering the vertically heterogeneous chlorophyll distribution: Study case in Lake Chaohu of China. Hu M; Zhang Y; Ma R; Xue K; Cao Z; Chu Q; Jing Y Sci Total Environ; 2021 Jun; 771():144811. PubMed ID: 33545474 [TBL] [Abstract][Full Text] [Related]
5. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning? Xiong J; Lin C; Cao Z; Hu M; Xue K; Chen X; Ma R Water Res; 2022 May; 215():118213. PubMed ID: 35247602 [TBL] [Abstract][Full Text] [Related]
6. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related]
7. Temporal dependence of chlorophyll a-nutrient relationships in Lake Taihu: Drivers and management implications. Zou W; Zhu G; Xu H; Zhu M; Zhang Y; Qin B J Environ Manage; 2022 Mar; 306():114476. PubMed ID: 35051816 [TBL] [Abstract][Full Text] [Related]
8. A soft sensor for simulating algal cell density based on dynamic response to environmental changes in a eutrophic shallow lake. Rao W; Qian X; Fan Y; Liu T Sci Total Environ; 2023 Apr; 868():161543. PubMed ID: 36640876 [TBL] [Abstract][Full Text] [Related]
9. Integrative Indicator for Assessing the Alert Levels of Algal Bloom in Lakes: Lake Taihu as a Case Study. Li Q; Hu W; Zhai S Environ Manage; 2016 Jan; 57(1):237-50. PubMed ID: 26296739 [TBL] [Abstract][Full Text] [Related]
10. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data]. Bao Y; Tian QJ; Chen M; Lü CG Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364 [TBL] [Abstract][Full Text] [Related]
11. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Yang Y; Zhang X; Gao W; Zhang Y; Hou X Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490 [TBL] [Abstract][Full Text] [Related]
12. Remote monitoring of total dissolved phosphorus in eutrophic Lake Taihu based on a novel algorithm: Implications for contributing factors and lake management. Zeng S; Lei S; Li Y; Lyu H; Dong X; Li J; Cai X Environ Pollut; 2022 Mar; 296():118740. PubMed ID: 34971740 [TBL] [Abstract][Full Text] [Related]
13. Long-term variation of phytoplankton biomass and physiology in Taihu lake as observed via MODIS satellite. Huang C; Zhang Y; Huang T; Yang H; Li Y; Zhang Z; He M; Hu Z; Song T; Zhu AX Water Res; 2019 Apr; 153():187-199. PubMed ID: 30711794 [TBL] [Abstract][Full Text] [Related]
14. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Duan H; Tao M; Loiselle SA; Zhao W; Cao Z; Ma R; Tang X Water Res; 2017 Oct; 122():455-470. PubMed ID: 28624729 [TBL] [Abstract][Full Text] [Related]
15. [Analysis of Influencing Factors of Chlorophyll-a in Lake Taihu Based on Bayesian Network]. Liu J; He YC; Deng JM; Tang XM Huan Jing Ke Xue; 2023 May; 44(5):2592-2600. PubMed ID: 37177933 [TBL] [Abstract][Full Text] [Related]
16. Long-term remote observations of particulate organic phosphorus concentration in eutrophic Lake Taihu based on a novel algorithm. Zeng S; Lei S; Qin Z; Song W; Sun Q Chemosphere; 2023 Aug; 332():138836. PubMed ID: 37137397 [TBL] [Abstract][Full Text] [Related]
17. [Spatial and Temporal Dynamics of Floating Algal Blooms in Lake Chaohu in 2016 and Their Environmental Drivers]. Hu MQ; Zhang YC; Ma RH; Zhang YX Huan Jing Ke Xue; 2018 Nov; 39(11):4925-4937. PubMed ID: 30628214 [TBL] [Abstract][Full Text] [Related]
18. A Study on Algae Bloom Pigment in the Eutrophic Lake Using Bio-Optical Modelling: Hyperspectral Remote Sensing Approach. Vishnu Prasanth BR; Sivakumar R; Ramaraj M Bull Environ Contam Toxicol; 2022 Dec; 109(6):962-968. PubMed ID: 35366066 [TBL] [Abstract][Full Text] [Related]
19. Long-term trend forecast of chlorophyll-a concentration over eutrophic lakes based on time series decomposition and deep learning algorithm. Chen C; Hu M; Chen Q; Zhang J; Feng T; Cui Z Sci Total Environ; 2024 Nov; 951():175451. PubMed ID: 39134277 [TBL] [Abstract][Full Text] [Related]
20. [Monitor of Cyanobacteria Bloom in Lake Taihu from 2001 to 2013 Based on MODIS Temporal Spectral Data]. Li Y; Zhang LF; Huang CP; Wang JN; Cen Y Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1406-11. PubMed ID: 30001016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]