These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 37028698)

  • 1. Barrier permeation and improved nanomedicine delivery in tumor microenvironments.
    Liu J; Zhang J; Gao Y; Jiang Y; Guan Z; Xie Y; Hu J; Chen J
    Cancer Lett; 2023 May; 562():216166. PubMed ID: 37028698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine.
    Tian Y; Cheng T; Sun F; Zhou Y; Yuan C; Guo Z; Wang Z
    Adv Colloid Interface Sci; 2024 Apr; 326():103124. PubMed ID: 38461766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies to improve tumor penetration of nanomedicines through nanoparticle design.
    Zhang YR; Lin R; Li HJ; He WL; Du JZ; Wang J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1519. PubMed ID: 29659166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery.
    Wang X; Zhang H; Chen X; Wu C; Ding K; Sun G; Luo Y; Xiang D
    Acta Biomater; 2023 Aug; 166():42-68. PubMed ID: 37257574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy.
    Xu X; Wu Y; Qian X; Wang Y; Wang J; Li J; Li Y; Zhang Z
    Adv Healthc Mater; 2022 Jan; 11(1):e2101428. PubMed ID: 34706400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Tumor Penetration of Nanomedicines.
    Sun Q; Ojha T; Kiessling F; Lammers T; Shi Y
    Biomacromolecules; 2017 May; 18(5):1449-1459. PubMed ID: 28328191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor Abnormality-Oriented Nanomedicine Design.
    Zhou Q; Xiang J; Qiu N; Wang Y; Piao Y; Shao S; Tang J; Zhou Z; Shen Y
    Chem Rev; 2023 Sep; 123(18):10920-10989. PubMed ID: 37713432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Brain Tumors with Nanomedicines: Overcoming Blood Brain Barrier Challenges.
    Khaitan D; Reddy PL; Ningaraj N
    Curr Clin Pharmacol; 2018; 13(2):110-119. PubMed ID: 29651960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles.
    Niu Y; Zhu J; Li Y; Shi H; Gong Y; Li R; Huo Q; Ma T; Liu Y
    J Control Release; 2018 May; 277():35-47. PubMed ID: 29545106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers.
    Yang H; Tong Z; Sun S; Mao Z
    J Control Release; 2020 Dec; 328():28-44. PubMed ID: 32858072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomedicines for cancer therapy: current status, challenges and future prospects.
    Bor G; Mat Azmi ID; Yaghmur A
    Ther Deliv; 2019 Feb; 10(2):113-132. PubMed ID: 30678550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles.
    Ernsting MJ; Murakami M; Roy A; Li SD
    J Control Release; 2013 Dec; 172(3):782-94. PubMed ID: 24075927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery.
    Cao Z; Li D; Zhao L; Liu M; Ma P; Luo Y; Yang X
    Nat Commun; 2022 Apr; 13(1):2038. PubMed ID: 35440570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance.
    Peng C; Huang Y; Zheng J
    J Control Release; 2020 Jun; 322():64-80. PubMed ID: 32194171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responsive and activable nanomedicines for remodeling the tumor microenvironment.
    Zhang Y; Han X; Nie G
    Nat Protoc; 2021 Jan; 16(1):405-430. PubMed ID: 33311713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery.
    Zhang B; Hu Y; Pang Z
    Front Pharmacol; 2017; 8():952. PubMed ID: 29311946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review.
    Chan WJ; Li H
    Biomed Phys Eng Express; 2024 Jan; 10(2):. PubMed ID: 38086099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.