These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37028717)

  • 41. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil.
    Yang X; Wen E; Ge C; El-Naggar A; Yu H; Wang S; Kwon EE; Song H; Shaheen SM; Wang H; Rinklebe J
    J Hazard Mater; 2023 Feb; 443(Pt B):130203. PubMed ID: 36327835
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous adsorption of Cd(II)andAs(III)by a novel biochar-supported nanoscale zero-valent iron in aqueous systems.
    Yang D; Wang L; Li Z; Tang X; He M; Yang S; Liu X; Xu J
    Sci Total Environ; 2020 Mar; 708():134823. PubMed ID: 31780167
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes.
    Cho DW; Yoon K; Ahn Y; Sun Y; Tsang DCW; Hou D; Ok YS; Song H
    J Hazard Mater; 2019 Jul; 374():412-419. PubMed ID: 31029746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous adsorption of As(III) and Cd(II) by ferrihydrite-modified biochar in aqueous solution and their mutual effects.
    Tian X; Xie Q; Chai G; Li G
    Sci Rep; 2022 Apr; 12(1):5918. PubMed ID: 35396518
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-assembly biochar colloids mycelial pellet for heavy metal removal from aqueous solution.
    Bai S; Wang L; Ma F; Zhu S; Xiao T; Yu T; Wang Y
    Chemosphere; 2020 Mar; 242():125182. PubMed ID: 31678853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Raspberry stalks-derived biochar, magnetic biochar and urea modified magnetic biochar - Synthesis, characterization and application for As(V) and Cr(VI) removal from river water.
    Dobrzyńska J; Wysokińska A; Olchowski R
    J Environ Manage; 2022 Aug; 316():115260. PubMed ID: 35569356
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Co-Removal Effect and Mechanism of Cr(VI) and Cd(II) by Biochar-Supported Sulfide-Modified Nanoscale Zero-Valent Iron in a Binary System.
    Zhao R; Cao X; Li T; Cui X; Cui Z
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897924
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functionalizing biochar by Co-pyrolysis shaddock peel with red mud for removing acid orange 7 from water.
    Zhang M; Lin K; Zhong Y; Zhang D; Ahmad M; Yu J; Fu H; Xu L; Wu S; Huang L
    Environ Pollut; 2022 Apr; 299():118893. PubMed ID: 35085649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced removal of metal-cyanide complexes from wastewater by Fe-impregnated biochar: Adsorption performance and removal mechanism.
    Wei Y; Chen L; Jiao G; Wen Y; Liao Q; Zhou H; Tang S
    Chemosphere; 2023 Aug; 331():138719. PubMed ID: 37086981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simultaneous alleviation of Cd availability in contaminated soil and accumulation in rice (Oryza sativa L.) by Fe-Mn oxide-modified biochar.
    Tan WT; Zhou H; Tang SF; Chen Q; Zhou X; Liu XH; Zeng P; Gu JF; Liao BH
    Sci Total Environ; 2023 Feb; 858(Pt 1):159730. PubMed ID: 36306853
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils.
    Wu C; Shi L; Xue S; Li W; Jiang X; Rajendran M; Qian Z
    Sci Total Environ; 2019 Jan; 647():1158-1168. PubMed ID: 30180324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphate adsorption performance and mechanisms by nanoporous biochar-iron oxides from aqueous solutions.
    Zhang Z; Yu H; Zhu R; Zhang X; Yan L
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):28132-28145. PubMed ID: 32410193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: Mechanisms insights and engineering practicality.
    Wang H; Cai J; Liao Z; Jawad A; Ifthikar J; Chen Z; Chen Z
    Bioresour Technol; 2020 Sep; 311():123553. PubMed ID: 32454422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amino modification of rice straw-derived biochar for enhancing its cadmium (II) ions adsorption from water.
    Zhang Y; Yue X; Xu W; Zhang H; Li F
    J Hazard Mater; 2019 Nov; 379():120783. PubMed ID: 31252344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of macromolecular humic/fulvic acid on Cd(II) adsorption onto reed-derived biochar as compared with tannic acid.
    Wang Y; Li Y; Zhang Y; Wei W
    Int J Biol Macromol; 2019 Aug; 134():43-55. PubMed ID: 31075327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ball milling sulfur-doped nano zero-valent iron @biochar composite for the efficient removal of phosphorus from water: Performance and mechanisms.
    Ai D; Wei T; Meng Y; Chen X; Wang B
    Bioresour Technol; 2022 Aug; 357():127316. PubMed ID: 35597516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pre-magnetic bamboo biochar cross-linked CaMgAl layered double-hydroxide composite: High-efficiency removal of As(III) and Cd(II) from aqueous solutions and insight into the mechanism of simultaneous purification.
    Lyu P; Li L; Huang X; Wang G; Zhu C
    Sci Total Environ; 2022 Jun; 823():153743. PubMed ID: 35151751
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous adsorption of As(III) and Pb(II) by the iron-sulfur codoped biochar composite: Competitive and synergistic effects.
    Chen Y; Lin Q; Wen X; He J; Luo H; Zhong Q; Wu L; Li J
    J Environ Sci (China); 2023 Mar; 125():14-25. PubMed ID: 36375900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simultaneous adsorption of tetracycline, ammonium and phosphate from wastewater by iron and nitrogen modified biochar: Kinetics, isotherm, thermodynamic and mechanism.
    Li X; Shi J
    Chemosphere; 2022 Apr; 293():133574. PubMed ID: 35016962
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of modification and co-aging with soils on Cd(II) adsorption behaviors and quantitative mechanisms by biochar.
    Meng Z; Huang S; Lin Z
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):8902-8915. PubMed ID: 35041169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.