These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 37028793)

  • 21. Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants.
    Rangabhashiyam S; Suganya E; Selvaraju N; Varghese LA
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1669-89. PubMed ID: 24436063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review.
    Mazur LP; Cechinel MAP; de Souza SMAGU; Boaventura RAR; Vilar VJP
    J Environ Manage; 2018 Oct; 223():215-253. PubMed ID: 29933140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements-A Review.
    Bilal M; Rasheed T; Sosa-Hernández JE; Raza A; Nabeel F; Iqbal HMN
    Mar Drugs; 2018 Feb; 16(2):. PubMed ID: 29463058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives.
    Saravanan A; Kumar PS; Hemavathy RV; Jeevanantham S; Jawahar MJ; Neshaanthini JP; Saravanan R
    Chemosphere; 2022 Nov; 307(Pt 1):135713. PubMed ID: 35843436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater.
    Znad H; Awual MR; Martini S
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Utilization of Dead and Live Fungal Biomass for the Removal of Heavy Metal: A Concise Review.
    Ayele A; Haile S; Alemu D; Kamaraj M
    ScientificWorldJournal; 2021; 2021():5588111. PubMed ID: 33927581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus.
    Ali MEM; Abd El-Aty AM; Badawy MI; Ali RK
    Ecotoxicol Environ Saf; 2018 Apr; 151():144-152. PubMed ID: 29331919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling and efficiency evaluation of the continuous biosorption of Cu(II) and Cr(VI) from water by agricultural waste materials.
    Blagojev N; Vasić V; Kukić D; Šćiban M; Prodanović J; Bera O
    J Environ Manage; 2021 Mar; 281():111876. PubMed ID: 33418386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosorption of hazardous waste from the municipal wastewater by marine algal biomass.
    Abdullah Al-Dhabi N; Arasu MV
    Environ Res; 2022 Mar; 204(Pt B):112115. PubMed ID: 34563525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical processes for the treatment of contaminant-rich wastewater: A comprehensive review.
    Brião GV; da Costa TB; Antonelli R; Costa JM
    Chemosphere; 2024 May; 355():141884. PubMed ID: 38575083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polysaccharide nanocomposites in wastewater treatment: A review.
    Al-Hazmi HE; Łuczak J; Habibzadeh S; Hasanin MS; Mohammadi A; Esmaeili A; Kim SJ; Khodadadi Yazdi M; Rabiee N; Badawi M; Saeb MR
    Chemosphere; 2024 Jan; 347():140578. PubMed ID: 37939921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionalization of MXene-based nanomaterials for the treatment of micropollutants in aquatic system: A review.
    Velusamy K; Chellam P; Kumar PS; Venkatachalam J; Periyasamy S; Saravanan R
    Environ Pollut; 2022 May; 301():119034. PubMed ID: 35196563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater.
    Barasarathi J; Abdullah PS; Uche EC
    Chemosphere; 2022 Oct; 305():135384. PubMed ID: 35724716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water quality improvement through macrophytes--a review.
    Dhote S; Dixit S
    Environ Monit Assess; 2009 May; 152(1-4):149-53. PubMed ID: 18537050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic valorisation of lignocellulosic biomass green sorbents for toxic pollutants removal.
    Šehović E; Memić M; Sulejmanović J; Hameed M; Begić S; Ljubijankić N; Selović A; Ghfar AA; Sher F
    Chemosphere; 2022 Nov; 307(Pt 1):135737. PubMed ID: 35850218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: isotherms, thermodynamics and kinetics study.
    Singh V; Ahmed G; Vedika S; Kumar P; Chaturvedi SK; Rai SN; Vamanu E; Kumar A
    Sci Rep; 2024 Mar; 14(1):7595. PubMed ID: 38556536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilized microbial nanoparticles for biosorption.
    Giese EC; Silva DDV; Costa AFM; Almeida SGC; Dussán KJ
    Crit Rev Biotechnol; 2020 Aug; 40(5):653-666. PubMed ID: 32299253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment.
    Rathi BS; Kumar PS; Vo DN
    Sci Total Environ; 2021 Nov; 797():149134. PubMed ID: 34346357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MXenes as emerging nanomaterials in water purification and environmental remediation.
    Yu S; Tang H; Zhang D; Wang S; Qiu M; Song G; Fu D; Hu B; Wang X
    Sci Total Environ; 2022 Mar; 811():152280. PubMed ID: 34896484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach.
    Mandal RR; Bashir Z; Mandal JR; Raj D
    Environ Monit Assess; 2024 May; 196(6):502. PubMed ID: 38700594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.