These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 37029125)
1. Br Zhao Y; Duan M; Deng C; Yang J; Yang S; Zhang Y; Sheng H; Li Y; Chen C; Zhao J Nat Commun; 2023 Apr; 14(1):1943. PubMed ID: 37029125 [TBL] [Abstract][Full Text] [Related]
2. Boosting the Faradaic Efficiency of Br Duan MY; Tang DJ; Yang J; Yang SP; Deng CY; Zhao YK; Li JK; Zhang YC; Chen CC; Zhao JC Adv Sci (Weinh); 2024 Jul; 11(25):e2401685. PubMed ID: 38664981 [TBL] [Abstract][Full Text] [Related]
3. Photoelectrochemical Epoxidation of Cyclohexene on an α-Fe Tayebi M; Masoumi Z; Tayyebi A; Kim JH; Lee H; Seo B; Lim CS; Kim HG ACS Appl Mater Interfaces; 2023 Apr; 15(16):20053-20063. PubMed ID: 37040426 [TBL] [Abstract][Full Text] [Related]
4. Bromide-Mediated Photoelectrochemical Epoxidation of Alkenes Using Water as an Oxygen Source with Conversion Efficiency and Selectivity up to 100. Liu X; Chen Z; Xu S; Liu G; Zhu Y; Yu X; Sun L; Li F J Am Chem Soc; 2022 Nov; 144(43):19770-19777. PubMed ID: 36260532 [TBL] [Abstract][Full Text] [Related]
5. Controlling the Hydrophilicity of the Electrochemical Interface to Modulate the Oxygen-Atom Transfer in Electrocatalytic Epoxidation Reactions. Dorchies F; Serva A; Crevel D; De Freitas J; Kostopoulos N; Robert M; Sel O; Salanne M; Grimaud A J Am Chem Soc; 2022 Dec; 144(49):22734-22746. PubMed ID: 36468903 [TBL] [Abstract][Full Text] [Related]
6. A controlled non-radical chlorine activation pathway on hematite photoanodes for efficient oxidative chlorination reactions. Tang D; Wu L; Li L; Fu N; Chen C; Zhang Y; Zhao J Chem Sci; 2024 Feb; 15(8):3018-3027. PubMed ID: 38404385 [TBL] [Abstract][Full Text] [Related]
7. HClO-Mediated Photoelectrochemical Epoxidation of Alkenes with Near 100 % Conversion Rate and Selectivity by Regulating Lattice Chlorine Cycle. Yang Y; Yuan X; Wang Q; Wan S; Lin C; Lu S; Zhong Q; Zhang K Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202314383. PubMed ID: 38216536 [TBL] [Abstract][Full Text] [Related]
8. A simple and effective catalytic system for epoxidation of aliphatic terminal alkenes with manganese(II) as the catalyst. Ho KP; Wong WL; Lam KM; Lai CP; Chan TH; Wong KY Chemistry; 2008; 14(26):7988-96. PubMed ID: 18618538 [TBL] [Abstract][Full Text] [Related]
9. Synthetic applications of nonmetal catalysts for homogeneous oxidations. Adam W; Saha-Möller CR; Ganeshpure PA Chem Rev; 2001 Nov; 101(11):3499-548. PubMed ID: 11840992 [TBL] [Abstract][Full Text] [Related]
10. Epoxidation of Cyclooctene Using Water as the Oxygen Atom Source at Manganese Oxide Electrocatalysts. Jin K; Maalouf JH; Lazouski N; Corbin N; Yang D; Manthiram K J Am Chem Soc; 2019 Apr; 141(15):6413-6418. PubMed ID: 30963761 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical Epoxidation of Propylene to Propylene Oxide via Halogen-Mediated Systems. Wang J; Wu G; Feng G; Li G; Wei Y; Li S; Mao J; Liu X; Chen A; Song Y; Dong X; Wei W; Chen W ACS Omega; 2023 Dec; 8(49):46569-46576. PubMed ID: 38107883 [TBL] [Abstract][Full Text] [Related]
12. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions. Wang B; Lee YM; Clémancey M; Seo MS; Sarangi R; Latour JM; Nam W J Am Chem Soc; 2016 Feb; 138(7):2426-36. PubMed ID: 26816269 [TBL] [Abstract][Full Text] [Related]
13. Direct Oxygen Transfer from H Lin X; Zhou Z; Li QY; Xu D; Xia SY; Leng BL; Zhai GY; Zhang SN; Sun LH; Zhao G; Chen JS; Li XH Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202207108. PubMed ID: 35789523 [TBL] [Abstract][Full Text] [Related]
14. Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria. Hou CT; Patel R; Laskin AI; Barnabe N Appl Environ Microbiol; 1979 Jul; 38(1):127-34. PubMed ID: 39502 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient and selective epoxidation of alkenes by photochemical oxygenation sensitized by a ruthenium(II) porphyrin with water as both electron and oxygen donor. Funyu S; Isobe T; Takagi S; Tryk DA; Inoue H J Am Chem Soc; 2003 May; 125(19):5734-40. PubMed ID: 12733912 [TBL] [Abstract][Full Text] [Related]
16. Improving efficiency and reducing enzyme inactivation during lipase-mediated epoxidation of α-pinene in a double-phase reaction system. Yu L; Zou C; Li Q; Liu Z; Liu Y; Tang A Bioprocess Biosyst Eng; 2023 Sep; 46(9):1331-1340. PubMed ID: 37470869 [TBL] [Abstract][Full Text] [Related]
17. Universal high-efficiency electrocatalytic olefin epoxidation via a surface-confined radical promotion. Ran P; Qiu A; Liu T; Wang F; Tian B; Xiang B; Li J; Lv Y; Ding M Nat Commun; 2024 Oct; 15(1):8877. PubMed ID: 39406721 [TBL] [Abstract][Full Text] [Related]
18. Electrocatalytic Epoxidation of Cyclooctene on Surface Modified Ni Foam Using Water as Oxygen Source. Chandra S; Koul A; Zhang J; Seisel S; Schuhmann W Chemistry; 2024 Mar; 30(18):e202303830. PubMed ID: 38271542 [TBL] [Abstract][Full Text] [Related]
19. Direct propylene epoxidation via water activation over Pd-Pt electrocatalysts. Chung M; Maalouf JH; Adams JS; Jiang C; Román-Leshkov Y; Manthiram K Science; 2024 Jan; 383(6678):49-55. PubMed ID: 38175873 [TBL] [Abstract][Full Text] [Related]
20. Olefin epoxidation by alkyl hydroperoxide with a novel cross-bridged cyclam manganese complex: demonstration of oxygenation by two distinct reactive intermediates. Yin G; Danby AM; Kitko D; Carter JD; Scheper WM; Busch DH Inorg Chem; 2007 Mar; 46(6):2173-80. PubMed ID: 17295471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]