These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37029169)

  • 21. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules.
    Lee CC; Chung PC; Tsai HM
    IEEE Trans Inf Technol Biomed; 2003 Sep; 7(3):208-17. PubMed ID: 14518735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-Dimensional Cascaded Net with Uncertain Probability Reduction for Abdominal Multi-Organ Segmentation in CT Sequences.
    Li C; Mao Y; Guo Y; Li J; Wang Y
    Comput Methods Programs Biomed; 2022 Jun; 221():106887. PubMed ID: 35597204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images.
    Zhuang M; Chen Z; Wang H; Tang H; He J; Qin B; Yang Y; Jin X; Yu M; Jin B; Li T; Kettunen L
    Int J Comput Assist Radiol Surg; 2023 Feb; 18(2):379-394. PubMed ID: 36048319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images.
    Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q
    Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Kidney Segmentation from Abdominal Images Using Spatial-Appearance Models.
    Khalifa F; Soliman A; Elmaghraby A; Gimel'farb G; El-Baz A
    Comput Math Methods Med; 2017; 2017():9818506. PubMed ID: 28280519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D marker-controlled watershed for kidney segmentation in clinical CT exams.
    Wieclawek W
    Biomed Eng Online; 2018 Feb; 17(1):26. PubMed ID: 29482560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of major torso organs in low-contrast micro-CT images of mice using a two-stage deeply supervised fully convolutional network.
    Wang H; Han Y; Chen Z; Hu R; Chatziioannou AF; Zhang B
    Phys Med Biol; 2019 Dec; 64(24):245014. PubMed ID: 31747654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic multiorgan segmentation in thorax CT images using U-net-GAN.
    Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X
    Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abdominal organ segmentation via deep diffeomorphic mesh deformations.
    Bongratz F; Rickmann AM; Wachinger C
    Sci Rep; 2023 Oct; 13(1):18270. PubMed ID: 37880251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-organ localization with cascaded global-to-local regression and shape prior.
    Gauriau R; Cuingnet R; Lesage D; Bloch I
    Med Image Anal; 2015 Jul; 23(1):70-83. PubMed ID: 25974326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fully Automated Spleen Localization And Segmentation Using Machine Learning And 3D Active Contours.
    Wood A; Soroushmehr SMR; Farzaneh N; Fessell D; Ward KR; Gryak J; Kahrobaei D; Na K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():53-56. PubMed ID: 30440339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abdominal artery segmentation method from CT volumes using fully convolutional neural network.
    Oda M; Roth HR; Kitasaka T; Misawa K; Fujiwara M; Mori K
    Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2069-2081. PubMed ID: 31493112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images.
    Wang H; Stout DB; Chatziioannou AF
    IEEE Trans Med Imaging; 2012 Jan; 31(1):88-102. PubMed ID: 21859613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal cord detection in planning CT for radiotherapy through adaptive template matching, IMSLIC and convolutional neural networks.
    Diniz JOB; Diniz PHB; Valente TLA; Silva AC; Paiva AC
    Comput Methods Programs Biomed; 2019 Mar; 170():53-67. PubMed ID: 30712604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions.
    Heinrich MP; Oktay O; Bouteldja N
    Med Image Anal; 2019 May; 54():1-9. PubMed ID: 30807894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. U-Net based deep learning bladder segmentation in CT urography.
    Ma X; Hadjiiski LM; Wei J; Chan HP; Cha KH; Cohan RH; Caoili EM; Samala R; Zhou C; Lu Y
    Med Phys; 2019 Apr; 46(4):1752-1765. PubMed ID: 30734932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Body region localization in whole-body low-dose CT images of PET/CT scans using virtual landmarks.
    Bai P; Udupa JK; Tong Y; Xie S; Torigian DA
    Med Phys; 2019 Mar; 46(3):1286-1299. PubMed ID: 30609058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.