These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37029267)

  • 1. SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning.
    Coleman K; Hu J; Schroeder A; Lee EB; Li M
    Commun Biol; 2023 Apr; 6(1):378. PubMed ID: 37029267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.
    Tu JJ; Li HS; Yan H; Zhang XF
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpaTopic: A statistical learning framework for exploring tumor spatial architecture from spatially resolved transcriptomic data.
    Zhang Y; Yu B; Ming W; Zhou X; Wang J; Chen D
    Sci Adv; 2024 Sep; 10(39):eadp4942. PubMed ID: 39331720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data.
    Guo Y; Zhu B; Tang C; Rong R; Ma Y; Xiao G; Xu L; Li Q
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39470304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating multiple variability in spatially resolved transcriptomics with scCube.
    Qian J; Bao H; Shao X; Fang Y; Liao J; Chen Z; Li C; Guo W; Hu Y; Li A; Yao Y; Fan X; Cheng Y
    Nat Commun; 2024 Jun; 15(1):5021. PubMed ID: 38866768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical and machine learning methods for spatially resolved transcriptomics with histology.
    Hu J; Schroeder A; Coleman K; Chen C; Auerbach BJ; Li M
    Comput Struct Biotechnol J; 2021; 19():3829-3841. PubMed ID: 34285782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational solutions for spatial transcriptomics.
    Kleino I; FrolovaitÄ— P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information.
    Dong L; Kollipara A; Darville T; Zou F; Zheng X
    Sci Rep; 2020 Mar; 10(1):5434. PubMed ID: 32214192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data.
    Cheng A; Hu G; Li WV
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.
    Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J
    J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics.
    Zhu J; Shang L; Zhou X
    Genome Biol; 2023 Mar; 24(1):39. PubMed ID: 36869394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking spatial clustering methods with spatially resolved transcriptomics data.
    Yuan Z; Zhao F; Lin S; Zhao Y; Yao J; Cui Y; Zhang XY; Zhao Y
    Nat Methods; 2024 Apr; 21(4):712-722. PubMed ID: 38491270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A graph self-supervised residual learning framework for domain identification and data integration of spatial transcriptomics.
    Huang J; Fu X; Zhang Z; Xie Y; Liu S; Wang Y; Zhao Z; Peng Y
    Commun Biol; 2024 Sep; 7(1):1123. PubMed ID: 39266614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data.
    Liu Y; Li N; Qi J; Xu G; Zhao J; Wang N; Huang X; Jiang W; Wei H; Justet A; Adams TS; Homer R; Amei A; Rosas IO; Kaminski N; Wang Z; Yan X
    Genome Biol; 2024 Oct; 25(1):271. PubMed ID: 39402626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially informed cell-type deconvolution for spatial transcriptomics.
    Ma Y; Zhou X
    Nat Biotechnol; 2022 Sep; 40(9):1349-1359. PubMed ID: 35501392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hidden Markov random field models for cell-type assignment of spatially resolved transcriptomics.
    Zhong C; Tian T; Wei Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37944045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.