BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37029320)

  • 1. Use of CRISPR-based screens to identify mechanisms of chemotherapy resistance.
    Alyateem G; Wade HM; Bickert AA; Lipsey CC; Mondal P; Smith MD; Labib RM; Mock BA; Robey RW; Gottesman MM
    Cancer Gene Ther; 2023 Aug; 30(8):1043-1050. PubMed ID: 37029320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New tools for old drugs: Functional genetic screens to optimize current chemotherapy.
    Gerhards NM; Rottenberg S
    Drug Resist Updat; 2018 Jan; 36():30-46. PubMed ID: 29499836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the CRISPR-Cas system in cancer drug development: Mechanisms of action and therapy.
    Chandrasekaran AP; Karapurkar JK; Chung HY; Ramakrishna S
    Biotechnol J; 2022 Jul; 17(7):e2100468. PubMed ID: 35157790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pooled CRISPR screening in pancreatic cancer cells implicates co-repressor complexes as a cause of multiple drug resistance via regulation of epithelial-to-mesenchymal transition.
    Ramaker RC; Hardigan AA; Gordon ER; Wright CA; Myers RM; Cooper SJ
    BMC Cancer; 2021 May; 21(1):632. PubMed ID: 34049503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guide RNA library-based CRISPR screens in plants: opportunities and challenges.
    Pan C; Li G; Bandyopadhyay A; Qi Y
    Curr Opin Biotechnol; 2023 Feb; 79():102883. PubMed ID: 36603502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR screens uncover protective effect of PSTK as a regulator of chemotherapy-induced ferroptosis in hepatocellular carcinoma.
    Chen Y; Li L; Lan J; Cui Y; Rao X; Zhao J; Xing T; Ju G; Song G; Lou J; Liang J
    Mol Cancer; 2022 Jan; 21(1):11. PubMed ID: 34983546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment.
    Xing H; Meng LH
    Acta Pharmacol Sin; 2020 May; 41(5):583-587. PubMed ID: 31792341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide CRISPR screens for the identification of therapeutic targets for cancer treatment.
    Xue VW; Wong SCC; Cho WCS
    Expert Opin Ther Targets; 2020 Nov; 24(11):1147-1158. PubMed ID: 32893711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance.
    Cetin R; Quandt E; Kaulich M
    Cells; 2021 Jan; 10(2):. PubMed ID: 33525637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CRISPR Platform for Targeted In Vivo Screens.
    Maranda V; Zhang Y; Vizeacoumar FS; Freywald A; Vizeacoumar FJ
    Methods Mol Biol; 2023; 2614():397-409. PubMed ID: 36587138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of CRISPR/Cas technology against drug-resistant lung cancers: an update.
    Chaudhary M; Sharma P; Mukherjee TK
    Mol Biol Rep; 2022 Dec; 49(12):11491-11502. PubMed ID: 36097111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens.
    Awwad SW; Serrano-Benitez A; Thomas JC; Gupta V; Jackson SP
    Nat Rev Mol Cell Biol; 2023 Jul; 24(7):477-494. PubMed ID: 36781955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives.
    Chan YT; Lu Y; Wu J; Zhang C; Tan HY; Bian ZX; Wang N; Feng Y
    Theranostics; 2022; 12(7):3329-3344. PubMed ID: 35547744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted CRISPR screening identifies PRMT5 as synthetic lethality combinatorial target with gemcitabine in pancreatic cancer cells.
    Wei X; Yang J; Adair SJ; Ozturk H; Kuscu C; Lee KY; Kane WJ; O'Hara PE; Liu D; Demirlenk YM; Habieb AH; Yilmaz E; Dutta A; Bauer TW; Adli M
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28068-28079. PubMed ID: 33097661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying synthetic lethal targets using CRISPR/Cas9 system.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Methods; 2017 Dec; 131():66-73. PubMed ID: 28710008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Based Approaches for Cancer Immunotherapy.
    Malla RR; Middela K
    Crit Rev Oncog; 2023; 28(4):1-14. PubMed ID: 38050977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9 for cancer research and therapy.
    Zhan T; Rindtorff N; Betge J; Ebert MP; Boutros M
    Semin Cancer Biol; 2019 Apr; 55():106-119. PubMed ID: 29673923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 for overcoming drug resistance in solid tumors.
    Saber A; Liu B; Ebrahimi P; Haisma HJ
    Daru; 2020 Jun; 28(1):295-304. PubMed ID: 30666557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections.
    Wu Y; Battalapalli D; Hakeem MJ; Selamneni V; Zhang P; Draz MS; Ruan Z
    J Nanobiotechnology; 2021 Dec; 19(1):401. PubMed ID: 34863214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges.
    Cheng X; Fan S; Wen C; Du X
    Brief Funct Genomics; 2020 May; 19(3):209-214. PubMed ID: 32052006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.