BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37029416)

  • 1. Ablation of microglia does not alter circadian rhythm of locomotor activity.
    Matsui F; Yamaguchi ST; Kobayashi R; Ito S; Nagashima S; Zhou Z; Norimoto H
    Mol Brain; 2023 Apr; 16(1):34. PubMed ID: 37029416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connexin30 and Connexin43 show a time-of-day dependent expression in the mouse suprachiasmatic nucleus and modulate rhythmic locomotor activity in the context of chronodisruption.
    Ali AAH; Stahr A; Ingenwerth M; Theis M; Steinhäuser C; von Gall C
    Cell Commun Signal; 2019 Jun; 17(1):61. PubMed ID: 31186021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory stimulation enhances light-induced phase shifts in free-running activity rhythms and Fos expression in the suprachiasmatic nucleus.
    Amir S; Cain S; Sullivan J; Robinson B; Stewart J
    Neuroscience; 1999; 92(4):1165-70. PubMed ID: 10426475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered circadian behavior and light sensing in mouse models of Alzheimer's disease.
    Weigel TK; Guo CL; Güler AD; Ferris HA
    Front Aging Neurosci; 2023; 15():1218193. PubMed ID: 37409006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-methyl-D-aspartate receptor subtype 2C is not involved in circadian oscillation or photoic entrainment of the biological clock in mice.
    Moriya T; Takahashi S; Ikeda M; Suzuki-Yamashita K; Asai M; Kadotani H; Okamura H; Yoshioka T; Shibata S
    J Neurosci Res; 2000 Sep; 61(6):663-73. PubMed ID: 10972963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitogen- and stress-activated protein kinase 1 modulates photic entrainment of the suprachiasmatic circadian clock.
    Cao R; Butcher GQ; Karelina K; Arthur JS; Obrietan K
    Eur J Neurosci; 2013 Jan; 37(1):130-40. PubMed ID: 23127194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recording and analysis of circadian rhythms in running-wheel activity in rodents.
    Verwey M; Robinson B; Amir S
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23380887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered circadian behavior and light sensing in mouse models of Alzheimer's disease.
    Weigel TK; Guo CL; Güler AD; Ferris HA
    bioRxiv; 2023 May; ():. PubMed ID: 37205532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily exposure to a running wheel entrains circadian rhythms in mice in parallel with development of an increase in spontaneous movement prior to running-wheel access.
    Yamanaka Y; Honma S; Honma K
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(11):R1367-75. PubMed ID: 24108869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Circadian Clock of Polarized Microglia and Its Interaction with Mouse Brain Oscillators.
    Honzlová P; Semenovykh K; Sumová A
    Cell Mol Neurobiol; 2023 Apr; 43(3):1319-1333. PubMed ID: 35821305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A circadian clock in the olfactory bulb controls olfactory responsivity.
    Granados-Fuentes D; Tseng A; Herzog ED
    J Neurosci; 2006 Nov; 26(47):12219-25. PubMed ID: 17122046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators.
    Malloy JN; Paulose JK; Li Y; Cassone VM
    Am J Physiol Gastrointest Liver Physiol; 2012 Aug; 303(4):G461-73. PubMed ID: 22723262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus.
    Zhang Y; Kornhauser JM; Zee PC; Mayo KE; Takahashi JS; Turek FW
    Neuroscience; 1996 Feb; 70(4):951-61. PubMed ID: 8848176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cell adhesion molecule EphA4 is involved in circadian clock functions.
    Kiessling S; O'Callaghan EK; Freyburger M; Cermakian N; Mongrain V
    Genes Brain Behav; 2018 Jan; 17(1):82-92. PubMed ID: 28425198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine vasopressin signaling in the suprachiasmatic nucleus on the resilience of circadian clock to jet lag.
    Yamaguchi Y
    Neurosci Res; 2018 Apr; 129():57-61. PubMed ID: 29061320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei.
    Li JD; Burton KJ; Zhang C; Hu SB; Zhou QY
    Am J Physiol Regul Integr Comp Physiol; 2009 Mar; 296(3):R824-30. PubMed ID: 19052319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.