These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 37029432)
1. Simultaneous assessment and training of an upper-limb amputee using incremental machine-learning-based myocontrol: a single-case experimental design. Nowak M; Bongers RM; van der Sluis CK; Albu-Schäffer A; Castellini C J Neuroeng Rehabil; 2023 Apr; 20(1):39. PubMed ID: 37029432 [TBL] [Abstract][Full Text] [Related]
2. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees. Amsuess S; Goebel P; Graimann B; Farina D IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406 [TBL] [Abstract][Full Text] [Related]
3. Online Bimanual Manipulation Using Surface Electromyography and Incremental Learning. Strazzulla I; Nowak M; Controzzi M; Cipriani C; Castellini C IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):227-234. PubMed ID: 28113557 [TBL] [Abstract][Full Text] [Related]
4. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis. Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418 [TBL] [Abstract][Full Text] [Related]
5. Improving bimanual interaction with a prosthesis using semi-autonomous control. Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087 [TBL] [Abstract][Full Text] [Related]
6. Unsupervised Myocontrol of a Virtual Hand Based on a Coadaptive Abstract Motor Mapping. Gigli A; Gijsberts A; Castellini C IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176159 [TBL] [Abstract][Full Text] [Related]
7. Preliminary Assessment of Two Simultaneous and Proportional Myocontrol Methods for 3-DoFs Prostheses Using Incremental Learning. Egle F; Di Domenico D; Marinelli A; Boccardo N; Canepa M; Laffranchi M; De Michieli L; Castellini C IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941277 [TBL] [Abstract][Full Text] [Related]
8. Progressive unsupervised control of myoelectric upper limbs. Gigli A; Gijsberts A; Nowak M; Vujaklija I; Castellini C J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37883969 [No Abstract] [Full Text] [Related]
9. Learning to teleoperate an upper-limb assistive humanoid robot for bimanual daily-living tasks. Connan M; Sierotowicz M; Henze B; Porges O; Albu-Schäffer A; Roa MA; Castellini C Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34757953 [No Abstract] [Full Text] [Related]
10. The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations. Nowak M; Castellini C PLoS One; 2016; 11(9):e0161678. PubMed ID: 27606674 [TBL] [Abstract][Full Text] [Related]
11. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. Markovic M; Schweisfurth MA; Engels LF; Bentz T; Wüstefeld D; Farina D; Dosen S J Neuroeng Rehabil; 2018 Mar; 15(1):28. PubMed ID: 29580245 [TBL] [Abstract][Full Text] [Related]
12. Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss. Segil JL; Huddle SA; Weir RFF IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):618-627. PubMed ID: 27390181 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous and Proportional Real-Time Myocontrol of Up to Three Degrees of Freedom of the Wrist and Hand. Nowak M; Vujaklija I; Sturma A; Castellini C; Farina D IEEE Trans Biomed Eng; 2023 Feb; 70(2):459-469. PubMed ID: 35881594 [TBL] [Abstract][Full Text] [Related]
14. User training for machine learning controlled upper limb prostheses: a serious game approach. Kristoffersen MB; Franzke AW; Bongers RM; Wand M; Murgia A; van der Sluis CK J Neuroeng Rehabil; 2021 Feb; 18(1):32. PubMed ID: 33579326 [TBL] [Abstract][Full Text] [Related]
15. Feedback-aided data acquisition improves myoelectric control of a prosthetic hand. Gigli A; Brusamento D; Meattini R; Melchiorri C; Castellini C J Neural Eng; 2020 Nov; 17(5):056047. PubMed ID: 33022665 [TBL] [Abstract][Full Text] [Related]
16. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching. Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106 [TBL] [Abstract][Full Text] [Related]
17. Automated Instability Detection for Interactive Myocontrol of Prosthetic Hands. Meattini R; Nowak M; Melchiorri C; Castellini C Front Neurorobot; 2019; 13():68. PubMed ID: 31507401 [TBL] [Abstract][Full Text] [Related]
18. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Pasquina PF; Evangelista M; Carvalho AJ; Lockhart J; Griffin S; Nanos G; McKay P; Hansen M; Ipsen D; Vandersea J; Butkus J; Miller M; Murphy I; Hankin D J Neurosci Methods; 2015 Apr; 244():85-93. PubMed ID: 25102286 [TBL] [Abstract][Full Text] [Related]
19. The Merits of Dynamic Data Acquisition for Realistic Myocontrol. Gigli A; Gijsberts A; Castellini C Front Bioeng Biotechnol; 2020; 8():361. PubMed ID: 32426344 [TBL] [Abstract][Full Text] [Related]
20. Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning. Tam S; Boukadoum M; Campeau-Lecours A; Gosselin B Sci Rep; 2021 May; 11(1):11275. PubMed ID: 34050220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]