These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37029553)
21. Li/Garnet Interface Stabilization by Thermal-Decomposition Vapor Deposition of an Amorphous Carbon Layer. Feng W; Dong X; Zhang X; Lai Z; Li P; Wang C; Wang Y; Xia Y Angew Chem Int Ed Engl; 2020 Mar; 59(13):5346-5349. PubMed ID: 31965702 [TBL] [Abstract][Full Text] [Related]
22. Garnet/polymer solid electrolytes for high-performance solid-state lithium metal batteries: The role of amorphous Li Khan K; Xin H; Fu B; Bilal Hanif M; Li P; Admasu Beshiwork B; Fang Z; Motola M; Xu Z; Wu M J Colloid Interface Sci; 2023 Jul; 642():246-254. PubMed ID: 37018960 [TBL] [Abstract][Full Text] [Related]
23. Achieving the High Capacity and High Stability of Li-Rich Oxide Cathode in Garnet-Based Solid-State Battery. Chen B; Zhang J; Wong D; Wang T; Li T; Liu C; Sun L; Liu X Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202315856. PubMed ID: 37985233 [TBL] [Abstract][Full Text] [Related]
24. Quasi- Zhou Y; Gao A; Duan M; Zhang X; Yang M; Gong L; Chen J; Song S; Xie F; Jia H; Wang Y ACS Appl Mater Interfaces; 2023 Sep; 15(38):45465-45474. PubMed ID: 37709730 [TBL] [Abstract][Full Text] [Related]
25. Anchoring an Artificial Solid-Electrolyte Interphase Layer on a 3D Current Collector for High-Performance Lithium Anodes. Li P; Dong X; Li C; Liu J; Liu Y; Feng W; Wang C; Wang Y; Xia Y Angew Chem Int Ed Engl; 2019 Feb; 58(7):2093-2097. PubMed ID: 30600874 [TBL] [Abstract][Full Text] [Related]
26. High-Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dual-Conductive Paths for Solid-State Li Metal Batteries. Yang Z; Li M; Lu G; Wang Y; Wei J; Hu X; Li Z; Li P; Xu C Small; 2022 Aug; 18(31):e2202911. PubMed ID: 35810467 [TBL] [Abstract][Full Text] [Related]
27. Excellent Li/Garnet Interface Wettability Achieved by Porous Hard Carbon Layer for Solid State Li Metal Battery. Chen L; Zhang J; Tong RA; Zhang J; Wang H; Shao G; Wang CA Small; 2022 Feb; 18(8):e2106142. PubMed ID: 34894083 [TBL] [Abstract][Full Text] [Related]
28. Improvement of the Interface between the Lithium Anode and a Garnet-Type Solid Electrolyte of Lithium Batteries Using an Aluminum-Nitride Layer. Jiang W; Dong L; Liu S; Ai B; Zhao S; Zhang W; Pan K; Zhang L Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745362 [TBL] [Abstract][Full Text] [Related]
29. Enhancing Interfacial Contact in Solid-State Batteries with a Gradient Composite Solid Electrolyte. Deng C; Chen N; Hou C; Liu H; Zhou Z; Chen R Small; 2021 May; 17(18):e2006578. PubMed ID: 33742535 [TBL] [Abstract][Full Text] [Related]
30. Universal lithiophilic interfacial layers towards dendrite-free lithium anodes for solid-state lithium-metal batteries. Lu G; Dong Z; Liu W; Jiang X; Yang Z; Liu Q; Yang X; Wu D; Li Z; Zhao Q; Hu X; Xu C; Pan F Sci Bull (Beijing); 2021 Sep; 66(17):1746-1753. PubMed ID: 36654382 [TBL] [Abstract][Full Text] [Related]
31. Composite Electrolytes Prepared by Improving the Interfacial Compatibility of Organic-Inorganic Electrolytes for Dendrite-Free, Long-Life All-Solid Lithium Metal Batteries. Ma X; Liu M; Wu Q; Guan X; Wang F; Liu H; Xu J ACS Appl Mater Interfaces; 2022 Dec; 14(48):53828-53839. PubMed ID: 36444892 [TBL] [Abstract][Full Text] [Related]
32. Dual-Phase Single-Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries. Xu R; Xiao Y; Zhang R; Cheng XB; Zhao CZ; Zhang XQ; Yan C; Zhang Q; Huang JQ Adv Mater; 2019 May; 31(19):e1808392. PubMed ID: 30907487 [TBL] [Abstract][Full Text] [Related]
33. TiO Chen Y; Huang Y; Fu H; Wu Y; Zhang D; Wen J; Huang L; Dai Y; Huang Y; Luo W ACS Appl Mater Interfaces; 2021 Jun; 13(24):28398-28404. PubMed ID: 34109782 [TBL] [Abstract][Full Text] [Related]
34. Electron bottleneck in the charge/discharge mechanism of lithium titanates for batteries. Ventosa E; Skoumal M; Vazquez FJ; Flox C; Arbiol J; Morante JR ChemSusChem; 2015 May; 8(10):1737-44. PubMed ID: 25892099 [TBL] [Abstract][Full Text] [Related]
35. Graphite Recycling from Spent Lithium-Ion Batteries. Rothermel S; Evertz M; Kasnatscheew J; Qi X; Grützke M; Winter M; Nowak S ChemSusChem; 2016 Dec; 9(24):3473-3484. PubMed ID: 27860314 [TBL] [Abstract][Full Text] [Related]
36. A Three-Dimensional Electrospun Li Wang D; Cai D; Zhong Y; Jiang Z; Zhang S; Xia X; Wang X; Tu J Front Chem; 2021; 9():751476. PubMed ID: 34671592 [TBL] [Abstract][Full Text] [Related]
37. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes. Grützke M; Krüger S; Kraft V; Vortmann B; Rothermel S; Winter M; Nowak S ChemSusChem; 2015 Oct; 8(20):3433-8. PubMed ID: 26360935 [TBL] [Abstract][Full Text] [Related]
38. Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Wu N; Yang ZZ; Yao HR; Yin YX; Gu L; Guo YG Angew Chem Int Ed Engl; 2015 May; 54(19):5757-61. PubMed ID: 25783632 [TBL] [Abstract][Full Text] [Related]
39. Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles. Shafique M; Akbar A; Rafiq M; Azam A; Luo X Waste Manag Res; 2023 Feb; 41(2):376-388. PubMed ID: 36373335 [TBL] [Abstract][Full Text] [Related]
40. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes. Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]