These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37029715)

  • 1. Direct Observation of Quadrupolar Strain Fields forming a Shear Band in Metallic Glasses.
    Kang S; Wang D; Caron A; Minnert C; Durst K; Kübel C; Mu X
    Adv Mater; 2023 Jun; 35(25):e2212086. PubMed ID: 37029715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The shear band controlled deformation in metallic glass: a perspective from fracture.
    Yang GN; Shao Y; Yao KF
    Sci Rep; 2016 Feb; 6():21852. PubMed ID: 26899145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the Local Atomic Arrangements in the Shear Band Regions of Metallic Glass.
    Mu X; Chellali MR; Boltynjuk E; Gunderov D; Valiev RZ; Hahn H; Kübel C; Ivanisenko Y; Velasco L
    Adv Mater; 2021 Mar; 33(12):e2007267. PubMed ID: 33604975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping Shear Bands in Metallic Glasses: From Atomic Structure to Bulk Dynamics.
    Sheng H; Şopu D; Fellner S; Eckert J; Gammer C
    Phys Rev Lett; 2022 Jun; 128(24):245501. PubMed ID: 35776470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions.
    Chen TH; Tsai CK
    Materials (Basel); 2015 Apr; 8(4):1831-1840. PubMed ID: 28788034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass.
    Pekin TC; Ding J; Gammer C; Ozdol B; Ophus C; Asta M; Ritchie RO; Minor AM
    Nat Commun; 2019 Jun; 10(1):2445. PubMed ID: 31164643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.
    He J; Kaban I; Mattern N; Song K; Sun B; Zhao J; Kim do H; Eckert J; Greer AL
    Sci Rep; 2016 May; 6():25832. PubMed ID: 27181922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study.
    Zhong C; Zhang H; Cao QP; Wang XD; Zhang DX; Ramamurty U; Jiang JZ
    Sci Rep; 2016 Aug; 6():30935. PubMed ID: 27480496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic mechanism of shear bands in amorphous solids.
    Dasgupta R; Hentschel HG; Procaccia I
    Phys Rev Lett; 2012 Dec; 109(25):255502. PubMed ID: 23368479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using delaunay triangularization to characterize non-affine displacement fields during athermal, quasistatic deformation of amorphous solids.
    Jin W; Datye A; Schwarz UD; Shattuck MD; O'Hern CS
    Soft Matter; 2021 Oct; 17(38):8612-8623. PubMed ID: 34545381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossover from random three-dimensional avalanches to correlated nano shear bands in metallic glasses.
    Krisponeit JO; Pitikaris S; Avila KE; Küchemann S; Krüger A; Samwer K
    Nat Commun; 2014 Apr; 5():3616. PubMed ID: 24717842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraordinary plasticity of ductile bulk metallic glasses.
    Chen M; Inoue A; Zhang W; Sakurai T
    Phys Rev Lett; 2006 Jun; 96(24):245502. PubMed ID: 16907252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation.
    Caron A; Bennewitz R
    Beilstein J Nanotechnol; 2015; 6():1721-32. PubMed ID: 26425424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superelongation and atomic chain formation in nanosized metallic glass.
    Luo JH; Wu FF; Huang JY; Wang JQ; Mao SX
    Phys Rev Lett; 2010 May; 104(21):215503. PubMed ID: 20867114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instability Analysis and Free Volume Simulations of Shear Band Directions and Arrangements in Notched Metallic Glasses.
    Li W; Gao Y; Bei H
    Sci Rep; 2016 Oct; 6():34878. PubMed ID: 27721462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recreating the shear band evolution in nanoscale metallic glass by mimicking the atomistic rolling deformation: a molecular dynamics study.
    Reddy KV; Pal S
    J Mol Model; 2021 Jul; 27(8):220. PubMed ID: 34232386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pure shear deformation and its induced mechanical responses in metallic glasses.
    Zhou Z; Wang H; Li M
    Proc Math Phys Eng Sci; 2019 Nov; 475(2231):20190486. PubMed ID: 31824221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional imaging of shear bands in bulk metallic glass composites.
    Hunter AH; Araullo-Peters V; Gibbons M; Restrepo OD; Niezgoda SR; Windl W; Flores KM; Hofmann DC; Marquis EA
    J Microsc; 2016 Dec; 264(3):304-310. PubMed ID: 27513447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of TEM sample thickness for measuring strain fields.
    Kang S; Wang D; Kübel C; Mu X
    Ultramicroscopy; 2024 Jan; 255():113844. PubMed ID: 37708815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile ductility and necking of metallic glass.
    Guo H; Yan PF; Wang YB; Tan J; Zhang ZF; Sui ML; Ma E
    Nat Mater; 2007 Oct; 6(10):735-9. PubMed ID: 17704779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.