BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37029739)

  • 1. 222 nm Far-UVC from filtered Krypton-Chloride excimer lamps does not cause eye irritation when deployed in a simulated office environment.
    Kousha O; O'Mahoney P; Hammond R; Wood K; Eadie E
    Photochem Photobiol; 2024; 100(1):137-145. PubMed ID: 37029739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure of Human Skin Models to KrCl Excimer Lamps: The Impact of Optical Filtering
    Buonanno M; Welch D; Brenner DJ
    Photochem Photobiol; 2021 May; 97(3):517-523. PubMed ID: 33465817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential harm to the skin from unfiltered krypton chloride 'far-ultraviolet-C' lamps, even below an occupational exposure limit.
    O'Mahoney P; Wood K; Ibbotson SH; Eadie E
    J Radiol Prot; 2022 Nov; 42(4):. PubMed ID: 36317283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber.
    Eadie E; Hiwar W; Fletcher L; Tidswell E; O'Mahoney P; Buonanno M; Welch D; Adamson CS; Brenner DJ; Noakes C; Wood K
    Sci Rep; 2022 Mar; 12(1):4373. PubMed ID: 35322064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflection of UVC wavelengths from common materials during surface UV disinfection: Assessment of human UV exposure and ozone generation.
    Ma B; Burke-Bevis S; Tiefel L; Rosen J; Feeney B; Linden KG
    Sci Total Environ; 2023 Apr; 869():161848. PubMed ID: 36709900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer Modeling Indicates Dramatically Less DNA Damage from Far-UVC Krypton Chloride Lamps (222 nm) than from Sunlight Exposure.
    Eadie E; O'Mahoney P; Finlayson L; Barnard IRM; Ibbotson SH; Wood K
    Photochem Photobiol; 2021 Sep; 97(5):1150-1154. PubMed ID: 34161614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV Inactivation of Common Pathogens and Surrogates Under 222 nm Irradiation from KrCl* Excimer Lamps.
    Ma B; Bright K; Ikner L; Ley C; Seyedi S; Gerba CP; Sobsey MD; Piper P; Linden KG
    Photochem Photobiol; 2023; 99(3):975-982. PubMed ID: 36129750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Far-UVC (222 nm) irradiation effectively inactivates ssRNA, dsRNA, ssDNA, and dsDNA viruses as compared to germicidal UVC (254 nm).
    Monika ; Madugula SK; Kondabagil K; Kunwar A
    Photochem Photobiol; 2024 May; ():. PubMed ID: 38736273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ultraviolet C emitted from KrCl excimer lamp with or without bandpass filter to mouse epidermis.
    Narita K; Asano K; Yamane K; Ohashi H; Igarashi T; Nakane A
    PLoS One; 2022; 17(5):e0267957. PubMed ID: 35503791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Single-Pass Disinfection Performance of Far-UVC Light on Airborne Microorganisms in Duct Flows.
    Zhang H; Lai ACK
    Environ Sci Technol; 2022 Dec; 56(24):17849-17857. PubMed ID: 36469399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the safety of new germicidal far-UVC technologies.
    Görlitz M; Justen L; Rochette PJ; Buonanno M; Welch D; Kleiman NJ; Eadie E; Kaidzu S; Bradshaw WJ; Javorsky E; Cridland N; Galor A; Guttmann M; Meinke MC; Schleusener J; Jensen P; Söderberg P; Yamano N; Nishigori C; O'Mahoney P; Manstein D; Croft R; Cole C; de Gruijl FR; Forbes PD; Trokel S; Marshall J; Brenner DJ; Sliney D; Esvelt K
    Photochem Photobiol; 2024; 100(3):501-520. PubMed ID: 37929787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Activity of Filtered Far-UVC Light (222 nm) against Different Pathogens.
    Lorenzo-Leal AC; Tam W; Kheyrandish A; Mohseni M; Bach H
    Biomed Res Int; 2023; 2023():2085140. PubMed ID: 37942030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UVC LED Irradiation Effectively Inactivates Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection System.
    Kim DK; Kang DH
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field Study and Evaluation of KrCl* Far UV-C Device Capability for Inactivation of Phi6 Bacteriophage.
    Seyedi S; Ma B; Groves M; King H; Linden KG
    Photochem Photobiol; 2023; 99(5):1293-1298. PubMed ID: 36533876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An excimer lamp to provide far-ultraviolet C irradiation for dining-table disinfection.
    Lv M; Huang J; Chen H; Zhang TT
    Sci Rep; 2023 Jan; 13(1):381. PubMed ID: 36611088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocular and Facial Far-UVC Doses from Ceiling-Mounted 222 nm Far-UVC Fixtures.
    Duncan MA; Welch D; Shuryak I; Brenner DJ
    Photochem Photobiol; 2023 Jan; 99(1):160-167. PubMed ID: 35818780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light.
    Buonanno M; Ponnaiya B; Welch D; Stanislauskas M; Randers-Pehrson G; Smilenov L; Lowy FD; Owens DM; Brenner DJ
    Radiat Res; 2017 Apr; 187(4):483-491. PubMed ID: 28225654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases.
    Welch D; Buonanno M; Grilj V; Shuryak I; Crickmore C; Bigelow AW; Randers-Pehrson G; Johnson GW; Brenner DJ
    Sci Rep; 2018 Feb; 8(1):2752. PubMed ID: 29426899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme Exposure to Filtered Far-UVC: A Case Study
    Eadie E; Barnard IMR; Ibbotson SH; Wood K
    Photochem Photobiol; 2021 May; 97(3):527-531. PubMed ID: 33471372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength-dependent DNA Photodamage in a 3-D human Skin Model over the Far-UVC and Germicidal UVC Wavelength Ranges from 215 to 255 nm.
    Welch D; Aquino de Muro M; Buonanno M; Brenner DJ
    Photochem Photobiol; 2022 Sep; 98(5):1167-1171. PubMed ID: 35104367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.