BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3703001)

  • 1. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17.
    Hendry SH; Jones EG
    Nature; 1986 Apr 24-30; 320(6064):750-3. PubMed ID: 3703001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex.
    Baroncelli L; Sale A; Viegi A; Maya Vetencourt JF; De Pasquale R; Baldini S; Maffei L
    Exp Neurol; 2010 Nov; 226(1):100-9. PubMed ID: 20713044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: effects of neonatal versus adult sensory deprivation.
    Akhtar ND; Land PW
    J Comp Neurol; 1991 May; 307(2):200-13. PubMed ID: 1713230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permissive proteolytic activity for visual cortical plasticity.
    Mataga N; Nagai N; Hensch TK
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7717-21. PubMed ID: 12032349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associative pairing involving monocular stimulation selectively mobilizes a subclass of GABAergic interneurons in the mouse visual cortex.
    Liguz-Lecznar M; Waleszczyk WJ; Zakrzewska R; Skangiel-Kramska J; Kossut M
    J Comp Neurol; 2009 Oct; 516(6):482-92. PubMed ID: 19672986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of human visual cortex: a balance between excitatory and inhibitory plasticity mechanisms.
    Murphy KM; Beston BR; Boley PM; Jones DG
    Dev Psychobiol; 2005 Apr; 46(3):209-21. PubMed ID: 15772972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of strabismus and monocular deprivation on the eye preference of neurons in the visual claustrum of the cat.
    Perkel DJ; LeVay S
    J Comp Neurol; 1984 Dec; 230(2):269-77. PubMed ID: 6512021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory threshold for critical-period activation in primary visual cortex.
    Fagiolini M; Hensch TK
    Nature; 2000 Mar; 404(6774):183-6. PubMed ID: 10724170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes.
    Müller CM; Best J
    Nature; 1989 Nov; 342(6248):427-30. PubMed ID: 2586611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex.
    Imamura K; Kasamatsu T; Tanaka S
    Neuroscience; 2007 Jun; 147(2):508-21. PubMed ID: 17544224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity.
    Di Cristo G; Chattopadhyaya B; Kuhlman SJ; Fu Y; Bélanger MC; Wu CZ; Rutishauser U; Maffei L; Huang ZJ
    Nat Neurosci; 2007 Dec; 10(12):1569-77. PubMed ID: 18026099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monocular deprivation enhances the nuclear signalling of extracellular signal-regulated kinase in the developing visual cortex.
    Takamura H; Ichisaka S; Hayashi C; Maki H; Hata Y
    Eur J Neurosci; 2007 Nov; 26(10):2884-98. PubMed ID: 17973925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific GABAA circuits for visual cortical plasticity.
    Fagiolini M; Fritschy JM; Löw K; Möhler H; Rudolph U; Hensch TK
    Science; 2004 Mar; 303(5664):1681-3. PubMed ID: 15017002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression patterns and deprivation effects on GABAA receptor subunit and GAD mRNAs in monkey lateral geniculate nucleus.
    Huntsman MM; Leggio MG; Jones EG
    J Comp Neurol; 1995 Feb; 352(2):235-47. PubMed ID: 7721992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity.
    Chapman B; Jacobson MD; Reiter HO; Stryker MP
    Nature; 1986 Nov 13-19; 324(6093):154-6. PubMed ID: 3785380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex.
    Beaver CJ; Ji Q; Fischer QS; Daw NW
    Nat Neurosci; 2001 Feb; 4(2):159-63. PubMed ID: 11175876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.