These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37030092)

  • 1. Electro-enzymatic ATP regeneration coupled to biocatalytic phosphorylation reactions.
    García-Molina G; Natale P; Coito AM; Cava DG; A C Pereira I; López-Montero I; Vélez M; Pita M; De Lacey AL
    Bioelectrochemistry; 2023 Aug; 152():108432. PubMed ID: 37030092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic regeneration and conservation of ATP: challenges and opportunities.
    Chen H; Zhang YPJ
    Crit Rev Biotechnol; 2021 Feb; 41(1):16-33. PubMed ID: 33012193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [NiFeSe]-hydrogenase chemistry.
    Wombwell C; Caputo CA; Reisner E
    Acc Chem Res; 2015 Nov; 48(11):2858-65. PubMed ID: 26488197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging enzymes for ATP regeneration in biocatalytic processes.
    Andexer JN; Richter M
    Chembiochem; 2015 Feb; 16(3):380-6. PubMed ID: 25619338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel H2-oxidizing [NiFeSe]hydrogenase from Desulfovibrio vulgaris Miyazaki F.
    Nonaka K; Nguyen NT; Yoon KS; Ogo S
    J Biosci Bioeng; 2013 Apr; 115(4):366-71. PubMed ID: 23201506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiometric and voltammetric investigations of H2/H+ catalysis by periplasmic hydrogenase from Desulfovibrio gigas immobilized at the electrode surface in an amphiphilic bilayer assembly.
    Parpaleix T; Laval JM; Majda M; Bourdillon C
    Anal Chem; 1992 Mar; 64(6):641-6. PubMed ID: 1316088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Round, round we go - strategies for enzymatic cofactor regeneration.
    Mordhorst S; Andexer JN
    Nat Prod Rep; 2020 Oct; 37(10):1316-1333. PubMed ID: 32582886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of guanosine using guanosine-inosine kinase from Exiguobacterium acetylicum coupled with ATP regeneration.
    Kawasaki H; Usuda Y; Shimaoka M; Utagawa T
    Biosci Biotechnol Biochem; 2000 Oct; 64(10):2259-61. PubMed ID: 11129609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer.
    Gutiérrez-Sánchez C; Olea D; Marques M; Fernández VM; Pereira IA; Vélez M; De Lacey AL
    Langmuir; 2011 May; 27(10):6449-57. PubMed ID: 21491850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogenase-based oxidative biocatalysis without oxygen.
    Al-Shameri A; Siebert DL; Sutiono S; Lauterbach L; Sieber V
    Nat Commun; 2023 May; 14(1):2693. PubMed ID: 37258512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H2 -Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration.
    Gutiérrez-Sanz Ó; Natale P; Márquez I; Marques MC; Zacarias S; Pita M; Pereira IA; López-Montero I; De Lacey AL; Vélez M
    Angew Chem Int Ed Engl; 2016 May; 55(21):6216-20. PubMed ID: 26991333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase.
    Shah NB; Duncan TM
    J Biol Chem; 2015 Aug; 290(34):21032-21041. PubMed ID: 26160173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis.
    Marques MC; Tapia C; Gutiérrez-Sanz O; Ramos AR; Keller KL; Wall JD; De Lacey AL; Matias PM; Pereira IAC
    Nat Chem Biol; 2017 May; 13(5):544-550. PubMed ID: 28319099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic fusions of globular proteins to the epsilon subunit of the Escherichia coli ATP synthase: Implications for in vivo rotational catalysis and epsilon subunit function.
    Cipriano DJ; Bi Y; Dunn SD
    J Biol Chem; 2002 May; 277(19):16782-90. PubMed ID: 11875079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough.
    Zacarias S; Vélez M; Pita M; De Lacey AL; Matias PM; Pereira IAC
    Methods Enzymol; 2018; 613():169-201. PubMed ID: 30509465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emissive Synthetic Cofactors: Enzymatic Interconversions of
    Hallé F; Fin A; Rovira AR; Tor Y
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):1087-1090. PubMed ID: 29228460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation-Driven Production of d-Allulose from d-Glucose by Coupling with an ATP Regeneration System.
    Guo Y; Feng T; Wang Z; Li H; Wei X; Chen J; Niu D; Liu J
    J Agric Food Chem; 2022 Dec; 70(49):15539-15547. PubMed ID: 36458726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioenergy beads: a tool for regeneration of ATP/NTP in biocatalytic synthesis.
    Nahálka J; Gemeiner P; Bucko M; Wang PG
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(5):515-21. PubMed ID: 16893814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A.
    Resnick SM; Zehnder AJ
    Appl Environ Microbiol; 2000 May; 66(5):2045-51. PubMed ID: 10788379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of cofactors for use in biocatalysis.
    Zhao H; van der Donk WA
    Curr Opin Biotechnol; 2003 Dec; 14(6):583-9. PubMed ID: 14662386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.