These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 3703010)
1. Spectrin assembly in avian erythroid development is determined by competing reactions of subunit homo- and hetero-oligomerization. Woods CM; Lazarides E Nature; 1986 May 1-7; 321(6065):85-9. PubMed ID: 3703010 [TBL] [Abstract][Full Text] [Related]
2. Expression and assembly of the erythroid membrane-skeletal proteins ankyrin (goblin) and spectrin in the morphogenesis of chicken neurons. Lazarides E; Nelson WJ J Cell Biochem; 1985; 27(4):423-41. PubMed ID: 2581981 [TBL] [Abstract][Full Text] [Related]
3. Spectrin oligomerization is cooperatively coupled to membrane assembly: a linkage targeted by many hereditary hemolytic anemias? Giorgi M; Cianci CD; Gallagher PG; Morrow JS Exp Mol Pathol; 2001 Jun; 70(3):215-30. PubMed ID: 11418000 [TBL] [Abstract][Full Text] [Related]
4. Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin. Moon RT; Lazarides E J Cell Biol; 1984 May; 98(5):1899-904. PubMed ID: 6233291 [TBL] [Abstract][Full Text] [Related]
5. beta-Spectrin limits alpha-spectrin assembly on membranes following synthesis in a chicken erythroid cell lysate. Moon RT; Lazarides E Nature; 1983 Sep 1-7; 305(5929):62-5. PubMed ID: 6888551 [TBL] [Abstract][Full Text] [Related]
6. Contributions of the beta-subunit to spectrin structure and function. Coleman TR; Fishkind DJ; Mooseker MS; Morrow JS Cell Motil Cytoskeleton; 1989; 12(4):248-63. PubMed ID: 2524283 [TBL] [Abstract][Full Text] [Related]
7. Changes in erythroid membrane proteins during erythropoietin-mediated terminal differentiation. Koury MJ; Bondurant MC; Rana SS J Cell Physiol; 1987 Dec; 133(3):438-48. PubMed ID: 3693408 [TBL] [Abstract][Full Text] [Related]
8. The expression and synthesis of the band 3 protein initiates the formation of a stable membrane skeleton in murine Rauscher-transformed erythroid cells. Hanspal M; Hanspal JS; Kalraiya R; Palek J Eur J Cell Biol; 1992 Aug; 58(2):313-8. PubMed ID: 1425768 [TBL] [Abstract][Full Text] [Related]
9. Biogenesis of erythrocyte membrane skeleton in health and disease. Hanspal M; Prchal JT; Palek J Stem Cells; 1993 May; 11 Suppl 1():8-12. PubMed ID: 8318923 [TBL] [Abstract][Full Text] [Related]
10. Posttranslational control of membrane-skeleton (ankyrin and alpha beta-spectrin) assembly in early myogenesis. Nelson WJ; Lazarides E J Cell Biol; 1985 May; 100(5):1726-35. PubMed ID: 3157691 [TBL] [Abstract][Full Text] [Related]
11. Stabilization and remodeling of the membrane skeleton during lens fiber cell differentiation and maturation. Lee A; Fischer RS; Fowler VM Dev Dyn; 2000 Mar; 217(3):257-70. PubMed ID: 10741420 [TBL] [Abstract][Full Text] [Related]
12. Physician Education: The Erythropoietin Receptor and Signal Transduction. Yoshimura A; Arai K Oncologist; 1996; 1(5):337-339. PubMed ID: 10388012 [TBL] [Abstract][Full Text] [Related]
13. Presence of erythroid and nonerythroid spectrin transcripts in human lens and cerebellum. Yoon SH; Skalka H; Prchal JT Invest Ophthalmol Vis Sci; 1989 Aug; 30(8):1860-6. PubMed ID: 2474519 [TBL] [Abstract][Full Text] [Related]
14. The molecular basis for membrane - cytoskeleton association in human erythrocytes. Bennett V J Cell Biochem; 1982; 18(1):49-65. PubMed ID: 6461664 [TBL] [Abstract][Full Text] [Related]
15. Unequal synthesis and differential degradation of alpha and beta spectrin during murine erythroid differentiation. Lehnert ME; Lodish HF J Cell Biol; 1988 Aug; 107(2):413-26. PubMed ID: 3166462 [TBL] [Abstract][Full Text] [Related]
16. The lethal hemolytic mutation in beta I sigma 2 spectrin Providence yields a null phenotype in neonatal skeletal muscle. Weed SA; Stabach PR; Oyer CE; Gallagher PG; Morrow JS Lab Invest; 1996 Jun; 74(6):1117-29. PubMed ID: 8667615 [TBL] [Abstract][Full Text] [Related]
17. Marked difference in membrane-protein-binding properties of the two isoforms of protein 4.1R expressed at early and late stages of erythroid differentiation. Nunomura W; Parra M; Hebiguchi M; Sawada K; Mohandas N; Takakuwa Y Biochem J; 2009 Jan; 417(1):141-8. PubMed ID: 18691159 [TBL] [Abstract][Full Text] [Related]
18. Structural insights into the stability and flexibility of unusual erythroid spectrin repeats. Kusunoki H; MacDonald RI; Mondragón A Structure; 2004 Apr; 12(4):645-56. PubMed ID: 15062087 [TBL] [Abstract][Full Text] [Related]
19. Ubiquitination of spectrin regulates the erythrocyte spectrin-protein-4.1-actin ternary complex dissociation: implications for the sickle cell membrane skeleton. Ghatpande SS; Goodman SR Cell Mol Biol (Noisy-le-grand); 2004 Feb; 50(1):67-74. PubMed ID: 15040429 [TBL] [Abstract][Full Text] [Related]
20. The present status of erythrocyte spectrin structure: the 106-residue repetitive structure is a basic feature of an entire class of proteins. Speicher DW J Cell Biochem; 1986; 30(3):245-58. PubMed ID: 3517024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]