These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 37030261)

  • 21. Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts.
    Bernal C; Rodríguez K; Martínez R
    Biotechnol Adv; 2018; 36(5):1470-1480. PubMed ID: 29894813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanotechnology and enzyme immobilization: a review.
    Oke MA; Ojo SA; Fasiku SA; Adebayo EA
    Nanotechnology; 2023 Jul; 34(38):. PubMed ID: 37257425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Armoring bio-catalysis via structural and functional coordination between nanostructured materials and lipases for tailored applications.
    Bilal M; Iqbal HMN
    Int J Biol Macromol; 2021 Jan; 166():818-838. PubMed ID: 33144258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review.
    Bilal M; Iqbal HMN; Adil SF; Shaik MR; Abdelgawad A; Hatshan MR; Khan M
    J Adv Res; 2022 May; 38():157-177. PubMed ID: 35572403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advancements in enzyme-incorporated nanomaterials: Synthesis, mechanistic formation, and applications.
    Anboo S; Lau SY; Kansedo J; Yap PS; Hadibarata T; Jeevanandam J; Kamaruddin AH
    Biotechnol Bioeng; 2022 Oct; 119(10):2609-2638. PubMed ID: 35851660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteases immobilized on nanomaterials for biocatalytic, environmental and biomedical applications: Advantages and drawbacks.
    Bilal M; Qamar SA; Carballares D; Berenguer-Murcia Á; Fernandez-Lafuente R
    Biotechnol Adv; 2024; 70():108304. PubMed ID: 38135131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures.
    Mohammadi ZB; Zhang F; Kharazmi MS; Jafari SM
    Crit Rev Food Sci Nutr; 2023; 63(32):11351-11369. PubMed ID: 35758266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis - A review.
    Gan J; Bagheri AR; Aramesh N; Gul I; Franco M; Almulaiky YQ; Bilal M
    Int J Biol Macromol; 2021 Jan; 167():502-515. PubMed ID: 33279559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications.
    Polakovič M; Švitel J; Bučko M; Filip J; Neděla V; Ansorge-Schumacher MB; Gemeiner P
    Biotechnol Lett; 2017 May; 39(5):667-683. PubMed ID: 28181062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Materials-based strategies for multi-enzyme immobilization and co-localization: A review.
    Jia F; Narasimhan B; Mallapragada S
    Biotechnol Bioeng; 2014 Feb; 111(2):209-22. PubMed ID: 24142707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production.
    Zhong L; Feng Y; Wang G; Wang Z; Bilal M; Lv H; Jia S; Cui J
    Int J Biol Macromol; 2020 Jun; 152():207-222. PubMed ID: 32109471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review.
    Albayati SH; Nezhad NG; Taki AG; Rahman RNZRA
    Int J Biol Macromol; 2024 Sep; 276(Pt 2):133978. PubMed ID: 39038570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immobilized lipases-based nano-biocatalytic systems - A versatile platform with incredible biotechnological potential.
    Bilal M; Fernandes CD; Mehmood T; Nadeem F; Tabassam Q; Ferreira LFR
    Int J Biol Macromol; 2021 Apr; 175():108-122. PubMed ID: 33548312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering.
    Alizadeh N; Salimi A
    J Nanobiotechnology; 2021 Jan; 19(1):26. PubMed ID: 33468160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Particle and Single-Molecule Characterization of Immobilized Enzymes: A Multiscale Path toward Optimizing Heterogeneous Biocatalysts.
    Diamanti E; López-Gallego F
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202319248. PubMed ID: 38476019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzyme Engineering for In Situ Immobilization.
    Rehm FB; Chen S; Rehm BH
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Challenges in biocatalysis for enzyme-based biofuel cells.
    Kim J; Jia H; Wang P
    Biotechnol Adv; 2006; 24(3):296-308. PubMed ID: 16403612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.
    Singh RK; Tiwari MK; Singh R; Lee JK
    Int J Mol Sci; 2013 Jan; 14(1):1232-77. PubMed ID: 23306150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point.
    Bilal M; Iqbal HMN; Guo S; Hu H; Wang W; Zhang X
    Int J Biol Macromol; 2018 Mar; 108():893-901. PubMed ID: 29102791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications.
    Ismail AR; Kashtoh H; Baek KH
    Int J Biol Macromol; 2021 Sep; 187():127-142. PubMed ID: 34298046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.