These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37030462)

  • 1. Effect of chitin nanocrystals on stereocomplexation of poly(l-lactide)/poly(d-lactide) blends.
    Ma F; Jiang C; Xie W; Wu D
    Int J Biol Macromol; 2023 Jun; 239():124372. PubMed ID: 37030462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation roles of cellulose nanocrystals and chitin nanocrystals in poly(ε-caprolactone) nanocomposites.
    Li J; Wu D
    Int J Biol Macromol; 2022 Apr; 205():587-594. PubMed ID: 35218803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hydrophobic modification of chitin nanocrystals on role as anti-nucleator in the crystallization of poly(ε-caprolactone)/polylactide blend.
    Ma F; Gao Y; Xie W; Wu D
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):132097. PubMed ID: 38710249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects.
    Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y
    J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface chain engineering of chitin nanocrystals towards tailoring the nucleating capacities for poly(β-hydroxybutyrate).
    Li J; Wang Y; Wang Z; Wang J; Wu D
    Int J Biol Macromol; 2021 Jan; 166():967-976. PubMed ID: 33144256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness.
    Luo Y; Ju Y; Bai H; Liu Z; Zhang Q; Fu Q
    J Phys Chem B; 2017 Jun; 121(25):6271-6279. PubMed ID: 28587466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Stereocomplexation between Enantiomeric Comb-Shaped Cellulose-g-poly(L-lactide) Nanohybrids and Poly(D-lactide) from the Melt.
    Ma P; Jiang L; Xu P; Dong W; Chen M; Lemstra PJ
    Biomacromolecules; 2015 Nov; 16(11):3723-9. PubMed ID: 26444105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt.
    Tsuji H; Tezuka Y
    Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into melting point depression of polylactide nanocomposites with acetylated chitin nanocrystals.
    Li J; Wang Y; Wang Z; Wu D
    Carbohydr Polym; 2021 Dec; 273():118594. PubMed ID: 34560995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length.
    Jing Z; Shi X; Zhang G
    Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of toughness by stereocomplex crystal formation in optically pure polylactides of high molecular weight.
    López-Rodríguez N; Martínez de Arenaza I; Meaurio E; Sarasua JR
    J Mech Behav Biomed Mater; 2014 Sep; 37():219-25. PubMed ID: 24951928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New opportunities for sustainable bioplastic development: Tailorable polymorphic and three-phase crystallization of stereocomplex polylactide by layered double hydroxide.
    Chen Q; Auras R; Corredig M; Kirkensgaard JJK; Mamakhel A; Uysal-Unalan I
    Int J Biol Macromol; 2022 Dec; 222(Pt A):1101-1109. PubMed ID: 36174869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization and Alkaline Degradation Behaviors of Poly(l-Lactide)/4-Armed Poly(ε-Caprolactone)-Block-Poly(d-Lactide) Blends with Different Poly(d-Lactide) Block Lengths.
    Dai S; Wang M; Zhuang Z; Ning Z
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization behavior of asymmetric PLLA/PDLA blends.
    Sun J; Yu H; Zhuang X; Chen X; Jing X
    J Phys Chem B; 2011 Mar; 115(12):2864-9. PubMed ID: 21384937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator.
    Chang WW; Niu J; Peng H; Rong W
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Polyethylene Glycol on the Non-Isothermal Crystallization of Poly(L-lactide) and Poly(D-lactide) Blends.
    Phuangthong P; Li W; Shen J; Nofar M; Worajittiphon P; Srithep Y
    Polymers (Basel); 2024 Jul; 16(15):. PubMed ID: 39125155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(lactic acid) stereocomplexes: A decade of progress.
    Tsuji H
    Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Processing of Stereocomplex-Type Polylactide.
    Bai H; Deng S; Bai D; Zhang Q; Fu Q
    Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 28898498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorphism of racemic poly(L-lactide)/poly(D-lactide) blend: effect of melt and cold crystallization.
    Bao RY; Yang W; Jiang WR; Liu ZY; Xie BH; Yang MB
    J Phys Chem B; 2013 Apr; 117(13):3667-74. PubMed ID: 23477609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remarkably enhanced stereocomplex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers.
    Yuan L; Deng S; Wang Y; Xiu H; Zhang Q; Bai H
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128919. PubMed ID: 38134994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.