BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37030462)

  • 1. Effect of chitin nanocrystals on stereocomplexation of poly(l-lactide)/poly(d-lactide) blends.
    Ma F; Jiang C; Xie W; Wu D
    Int J Biol Macromol; 2023 Jun; 239():124372. PubMed ID: 37030462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation roles of cellulose nanocrystals and chitin nanocrystals in poly(ε-caprolactone) nanocomposites.
    Li J; Wu D
    Int J Biol Macromol; 2022 Apr; 205():587-594. PubMed ID: 35218803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hydrophobic modification of chitin nanocrystals on role as anti-nucleator in the crystallization of poly(ε-caprolactone)/polylactide blend.
    Ma F; Gao Y; Xie W; Wu D
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):132097. PubMed ID: 38710249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects.
    Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y
    J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface chain engineering of chitin nanocrystals towards tailoring the nucleating capacities for poly(β-hydroxybutyrate).
    Li J; Wang Y; Wang Z; Wang J; Wu D
    Int J Biol Macromol; 2021 Jan; 166():967-976. PubMed ID: 33144256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness.
    Luo Y; Ju Y; Bai H; Liu Z; Zhang Q; Fu Q
    J Phys Chem B; 2017 Jun; 121(25):6271-6279. PubMed ID: 28587466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Stereocomplexation between Enantiomeric Comb-Shaped Cellulose-g-poly(L-lactide) Nanohybrids and Poly(D-lactide) from the Melt.
    Ma P; Jiang L; Xu P; Dong W; Chen M; Lemstra PJ
    Biomacromolecules; 2015 Nov; 16(11):3723-9. PubMed ID: 26444105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt.
    Tsuji H; Tezuka Y
    Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into melting point depression of polylactide nanocomposites with acetylated chitin nanocrystals.
    Li J; Wang Y; Wang Z; Wu D
    Carbohydr Polym; 2021 Dec; 273():118594. PubMed ID: 34560995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length.
    Jing Z; Shi X; Zhang G
    Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of toughness by stereocomplex crystal formation in optically pure polylactides of high molecular weight.
    López-Rodríguez N; Martínez de Arenaza I; Meaurio E; Sarasua JR
    J Mech Behav Biomed Mater; 2014 Sep; 37():219-25. PubMed ID: 24951928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New opportunities for sustainable bioplastic development: Tailorable polymorphic and three-phase crystallization of stereocomplex polylactide by layered double hydroxide.
    Chen Q; Auras R; Corredig M; Kirkensgaard JJK; Mamakhel A; Uysal-Unalan I
    Int J Biol Macromol; 2022 Dec; 222(Pt A):1101-1109. PubMed ID: 36174869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization and Alkaline Degradation Behaviors of Poly(l-Lactide)/4-Armed Poly(ε-Caprolactone)-Block-Poly(d-Lactide) Blends with Different Poly(d-Lactide) Block Lengths.
    Dai S; Wang M; Zhuang Z; Ning Z
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization behavior of asymmetric PLLA/PDLA blends.
    Sun J; Yu H; Zhuang X; Chen X; Jing X
    J Phys Chem B; 2011 Mar; 115(12):2864-9. PubMed ID: 21384937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator.
    Chang WW; Niu J; Peng H; Rong W
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(lactic acid) stereocomplexes: A decade of progress.
    Tsuji H
    Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Processing of Stereocomplex-Type Polylactide.
    Bai H; Deng S; Bai D; Zhang Q; Fu Q
    Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 28898498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphism of racemic poly(L-lactide)/poly(D-lactide) blend: effect of melt and cold crystallization.
    Bao RY; Yang W; Jiang WR; Liu ZY; Xie BH; Yang MB
    J Phys Chem B; 2013 Apr; 117(13):3667-74. PubMed ID: 23477609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkably enhanced stereocomplex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers.
    Yuan L; Deng S; Wang Y; Xiu H; Zhang Q; Bai H
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128919. PubMed ID: 38134994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(L-lactide) nanocomposites containing poly(D-lactide) grafted nanohydroxyapatite with improved interfacial adhesion via stereocomplexation.
    Huang G; Du Z; Yuan Z; Gu L; Cai Q; Yang X
    J Mech Behav Biomed Mater; 2018 Feb; 78():10-19. PubMed ID: 29128694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.