These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37030462)
61. Accelerating the crystallization kinetics of linear polylactides by adding cyclic poly (L-lactide): Nucleation, plasticization and topological effects. Ruiz MB; Pérez-Camargo RA; López JV; Penott-Chang E; Múgica A; Coulembier O; Müller AJ Int J Biol Macromol; 2021 Sep; 186():255-267. PubMed ID: 34246673 [TBL] [Abstract][Full Text] [Related]
62. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone- Jing Z; Li J; Xiao W; Xu H; Hong P; Li Y RSC Adv; 2019 Aug; 9(45):26067-26079. PubMed ID: 35531016 [TBL] [Abstract][Full Text] [Related]
63. Construction of a stereocomplex between poly(D-lactide) grafted hydroxyapatite and poly(L-lactide): toward a bioactive composite scaffold with enhanced interfacial bonding. Shuai C; Yu L; Feng P; Peng S; Pan H; Bai X J Mater Chem B; 2022 Jan; 10(2):214-223. PubMed ID: 34927656 [TBL] [Abstract][Full Text] [Related]
64. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries. Li Z; Yuan D; Jin G; Tan BH; He C ACS Appl Mater Interfaces; 2016 Jan; 8(3):1842-53. PubMed ID: 26717323 [TBL] [Abstract][Full Text] [Related]
66. The Effect of Stereocomplexation and Crystallinity on the Degradation of Polylactide Nanoparticles. Yin C; Hemstedt J; Scheuer K; Struczyńska M; Weber C; Schubert US; Bossert J; Jandt KD Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470771 [TBL] [Abstract][Full Text] [Related]
67. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Tsuji H Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948 [TBL] [Abstract][Full Text] [Related]
68. Self-assembling stereocomplex nanoparticles by enantiomeric poly(γ-glutamic acid)-poly(lactide) graft copolymers as a protein delivery carrier. Zhu Y; Akagi T; Akashi M Macromol Biosci; 2014 Apr; 14(4):576-87. PubMed ID: 24357577 [TBL] [Abstract][Full Text] [Related]
69. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency. Bai D; Liu H; Bai H; Zhang Q; Fu Q Sci Rep; 2016 Feb; 6():20260. PubMed ID: 26837848 [TBL] [Abstract][Full Text] [Related]
70. Continuous Spectrum of Morphologies and Phase Behavior across the Contact Zone from Poly(l-lactide) to Poly(d-lactide): Stereocomplex, Homocrystal, and Between. Cui J; Yang SG; Zhang R; Cao Y; Wang Y; Zeng X; Liu F; Ungar G Macromolecules; 2023 Nov; 56(21):8754-8766. PubMed ID: 38024153 [TBL] [Abstract][Full Text] [Related]
71. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. Jalali A; Romero-Diez S; Nofar M; Park CB Int J Biol Macromol; 2021 Dec; 193(Pt B):2210-2220. PubMed ID: 34798187 [TBL] [Abstract][Full Text] [Related]
72. Stabilization of pH-sensitive mPEG-PH-PLA nanoparticles by stereocomplexation between enantiomeric polylactides. Liu R; He B; Li D; Lai Y; Tang JZ; Gu Z Macromol Rapid Commun; 2012 Jun; 33(12):1061-6. PubMed ID: 22514133 [TBL] [Abstract][Full Text] [Related]
73. Influence of Polylactide (PLA) Stereocomplexation on the Microstructure of PLA/PBS Blends and the Cell Morphology of Their Microcellular Foams. Sun Z; Wang L; Zhou J; Fan X; Xie H; Zhang H; Zhang G; Shi X Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33076235 [TBL] [Abstract][Full Text] [Related]
74. Biodegradable nanogel formation of polylactide-grafted dextran copolymer in dilute aqueous solution and enhancement of its stability by stereocomplexation. Nagahama K; Mori Y; Ohya Y; Ouchi T Biomacromolecules; 2007 Jul; 8(7):2135-41. PubMed ID: 17559263 [TBL] [Abstract][Full Text] [Related]
75. Robust methylcellulose hydrogels reinforced with chitin nanocrystals. Jung HS; Kim HC; Ho Park W Carbohydr Polym; 2019 Jun; 213():311-319. PubMed ID: 30879674 [TBL] [Abstract][Full Text] [Related]
77. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. Yu J; Qiu Z ACS Appl Mater Interfaces; 2011 Mar; 3(3):890-7. PubMed ID: 21361280 [TBL] [Abstract][Full Text] [Related]
78. Stereocomplexation in Copolymer Networks Incorporating Enantiomeric Glycerol-Based 3-Armed Lactide Oligomers and a 2-Armed ɛ-Caprolactone Oligomer. Shibita A; Kawasaki S; Shimasaki T; Teramoto N; Shibata M Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773712 [TBL] [Abstract][Full Text] [Related]
79. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Lizundia E; Fortunati E; Dominici F; Vilas JL; León LM; Armentano I; Torre L; Kenny JM Carbohydr Polym; 2016 May; 142():105-13. PubMed ID: 26917380 [TBL] [Abstract][Full Text] [Related]
80. Lipase-catalyzed biodegradation of poly(epsilon-caprolactone) blended with various polylactide-based polymers. Li S; Liu L; Garreau H; Vert M Biomacromolecules; 2003; 4(2):372-7. PubMed ID: 12625734 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]