These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37030567)

  • 1. Bacterial GTPases as druggable targets to tackle antimicrobial resistance.
    Shanbhag C; Saraogi I
    Bioorg Med Chem Lett; 2023 May; 87():129276. PubMed ID: 37030567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding.
    Furniss RCD; Kaderabkova N; Barker D; Bernal P; Maslova E; Antwi AAA; McNeil HE; Pugh HL; Dortet L; Blair JMA; Larrouy-Maumus G; McCarthy RR; Gonzalez D; Mavridou DAI
    Elife; 2022 Jan; 11():. PubMed ID: 35025730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Antibacterial Targets in Protein Biogenesis Pathways.
    Potteth US; Upadhyay T; Saini S; Saraogi I
    Chembiochem; 2022 Feb; 23(4):e202100459. PubMed ID: 34643994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial proton motive force as an unprecedented target to control antimicrobial resistance.
    Yang B; Tong Z; Shi J; Wang Z; Liu Y
    Med Res Rev; 2023 Jul; 43(4):1068-1090. PubMed ID: 36896761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Strategies To Target Bacterial Virulence.
    Garland M; Loscher S; Bogyo M
    Chem Rev; 2017 Mar; 117(5):4422-4461. PubMed ID: 28234447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling antimicrobial resistance using metabolomics.
    Kok M; Maton L; van der Peet M; Hankemeier T; van Hasselt JGC
    Drug Discov Today; 2022 Jun; 27(6):1774-1783. PubMed ID: 35341988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review.
    Oliver SP; Murinda SE; Jayarao BM
    Foodborne Pathog Dis; 2011 Mar; 8(3):337-55. PubMed ID: 21133795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial signaling as an antimicrobial target.
    Ellermann M; Sperandio V
    Curr Opin Microbiol; 2020 Oct; 57():78-86. PubMed ID: 32916624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New perspectives for a new century: implications of pathogen responses for the future of antimicrobial therapy.
    Melstrom KA; Smith JW; Gamelli RL; Shankar R
    J Burn Care Res; 2006; 27(3):251-64. PubMed ID: 16679890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Antibacterial Compounds and their Drug Targets - Successes and Challenges.
    Kaczor AA; Polski A; Sobótka-Polska K; Pachuta-Stec A; Makarska-Bialokoz M; Pitucha M
    Curr Med Chem; 2017; 24(18):1948-1982. PubMed ID: 27978802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combatting antimicrobial resistance via the cysteine biosynthesis pathway in bacterial pathogens.
    Hicks JL; Oldham KEA; McGarvie J; Walker EJ
    Biosci Rep; 2022 Oct; 42(10):. PubMed ID: 36148777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Has nature already identified all useful antibacterial targets?
    Bumann D
    Curr Opin Microbiol; 2008 Oct; 11(5):387-92. PubMed ID: 18804175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical pharmacology of antimicrobial use in humans and animals.
    Lathers CM
    J Clin Pharmacol; 2002 Jun; 42(6):587-600. PubMed ID: 12043947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel agents to inhibit microbial virulence and pathogenicity.
    Escaich S
    Expert Opin Ther Pat; 2010 Oct; 20(10):1401-18. PubMed ID: 20718591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can virulence factors be viable antibacterial targets?
    Marra A
    Expert Rev Anti Infect Ther; 2004 Feb; 2(1):61-72. PubMed ID: 15482172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The new treatment paradigm and the role of carbapenems.
    Masterton RG
    Int J Antimicrob Agents; 2009 Feb; 33(2):105-110. PubMed ID: 18848436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance.
    Mehta HH; Prater AG; Shamoo Y
    J Antibiot (Tokyo); 2018 Feb; 71(2):279-286. PubMed ID: 28928474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TpiA is a Key Metabolic Enzyme That Affects Virulence and Resistance to Aminoglycoside Antibiotics through CrcZ in Pseudomonas aeruginosa.
    Xia Y; Wang D; Pan X; Xia B; Weng Y; Long Y; Ren H; Zhou J; Jin Y; Bai F; Cheng Z; Jin S; Wu W
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How many modes of action should an antibiotic have?
    Brötz-Oesterhelt H; Brunner NA
    Curr Opin Pharmacol; 2008 Oct; 8(5):564-73. PubMed ID: 18621146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Bacterial Membrane Proteins to Explore the Beneficial Effects of Natural Products: New Antibiotics against Drug Resistance.
    Huang P; Wang Z; Cai K; Wei L; Chu Y; Guo M; Fan E
    Curr Med Chem; 2022; 29(12):2109-2126. PubMed ID: 34126882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.