BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37030626)

  • 1. ASTER-B regulates mitochondrial carotenoid transport and homeostasis.
    Bandara S; Moon J; Ramkumar S; von Lintig J
    J Lipid Res; 2023 May; 64(5):100369. PubMed ID: 37030626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aster proteins mediate carotenoid transport in mammalian cells.
    Bandara S; Ramkumar S; Imanishi S; Thomas LD; Sawant OB; Imanishi Y; von Lintig J
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2200068119. PubMed ID: 35394870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism for the selective uptake of macular carotenoids mediated by the HDL cholesterol receptor SR-BI.
    Li B; George EW; Vachali P; Chang FY; Gorusupudi A; Arunkumar R; Giauque NA; Wan Z; Frederick JM; Bernstein PS
    Exp Eye Res; 2023 Apr; 229():109429. PubMed ID: 36863431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for compartmentalization of mammalian carotenoid metabolism.
    Palczewski G; Amengual J; Hoppel CL; von Lintig J
    FASEB J; 2014 Oct; 28(10):4457-69. PubMed ID: 25002123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins.
    Thomas SE; Harrison EH
    J Lipid Res; 2016 Oct; 57(10):1865-1878. PubMed ID: 27538825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe.
    During A; Dawson HD; Harrison EH
    J Nutr; 2005 Oct; 135(10):2305-12. PubMed ID: 16177187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.
    Palczewski G; Widjaja-Adhi MA; Amengual J; Golczak M; von Lintig J
    J Lipid Res; 2016 Sep; 57(9):1684-95. PubMed ID: 27389691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic deletion of Bco2 and Isx establishes a golden mouse model for carotenoid research.
    Thomas LD; Ramkumar S; Golczak M; von Lintig J
    Mol Metab; 2023 Jul; 73():101742. PubMed ID: 37225015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate Specificity of Purified Recombinant Chicken β-Carotene 9',10'-Oxygenase (BCO2).
    Dela Seña C; Sun J; Narayanasamy S; Riedl KM; Yuan Y; Curley RW; Schwartz SJ; Harrison EH
    J Biol Chem; 2016 Jul; 291(28):14609-19. PubMed ID: 27143479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal accumulation of zeaxanthin, lutein, and β-carotene in mice deficient in carotenoid cleavage enzymes.
    Li B; Vachali PP; Shen Z; Gorusupudi A; Nelson K; Besch BM; Bartschi A; Longo S; Mattinson T; Shihab S; Polyakov NE; Suntsova LP; Dushkin AV; Bernstein PS
    Exp Eye Res; 2017 Jun; 159():123-131. PubMed ID: 28286282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Provitamin A carotenoids from an engineered high-carotenoid maize are bioavailable and zeaxanthin does not compromise β-carotene absorption in poultry.
    Díaz-Gómez J; Moreno JA; Angulo E; Sandmann G; Zhu C; Capell T; Nogareda C
    Transgenic Res; 2017 Oct; 26(5):591-601. PubMed ID: 28646243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans.
    Borel P; Lietz G; Goncalves A; Szabo de Edelenyi F; Lecompte S; Curtis P; Goumidi L; Caslake MJ; Miles EA; Packard C; Calder PC; Mathers JC; Minihane AM; Tourniaire F; Kesse-Guyot E; Galan P; Hercberg S; Breidenassel C; González Gross M; Moussa M; Meirhaeghe A; Reboul E
    J Nutr; 2013 Apr; 143(4):448-56. PubMed ID: 23427331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Carotene bioaccessibility from biofortified maize (Zea mays) is related to its density and is negatively influenced by lutein and zeaxanthin.
    Dube N; Mashurabad PC; Hossain F; Pullakhandam R; Thingnganing L; Bharatraj DK
    Food Funct; 2018 Jan; 9(1):379-388. PubMed ID: 29215107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts.
    D'Ambrosio C; Stigliani AL; Rambla JL; Frusciante S; Diretto G; Enfissi EMA; Granell A; Fraser PD; Giorio G
    Plant Sci; 2023 Mar; 328():111575. PubMed ID: 36572066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of season and storage period on accumulation of individual carotenoids in pumpkin flesh (Cucurbita moschata).
    Jaswir I; Shahidan N; Othman R; Has-Yun Hashim YZ; Octavianti F; bin Salleh MN
    J Oleo Sci; 2014; 63(8):761-7. PubMed ID: 25007748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aster la vista: Unraveling the biochemical basis of carotenoid homeostasis in the human retina.
    Bandara S; von Lintig J
    Bioessays; 2022 Nov; 44(11):e2200133. PubMed ID: 36127289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive inhibition of carotenoid transport and tissue concentrations by high dose supplements of lutein, zeaxanthin and beta-carotene.
    Wang Y; Roger Illingworth D; Connor SL; Barton Duell P; Connor WE
    Eur J Nutr; 2010 Sep; 49(6):327-36. PubMed ID: 20082082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aster-B coordinates with Arf1 to regulate mitochondrial cholesterol transport.
    Andersen JP; Zhang J; Sun H; Liu X; Liu J; Nie J; Shi Y
    Mol Metab; 2020 Dec; 42():101055. PubMed ID: 32738348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two carotenoid oxygenases contribute to mammalian provitamin A metabolism.
    Amengual J; Widjaja-Adhi MAK; Rodriguez-Santiago S; Hessel S; Golczak M; Palczewski K; von Lintig J
    J Biol Chem; 2013 Nov; 288(47):34081-34096. PubMed ID: 24106281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulate carotenoid and lipid metabolism in mice.
    Ford NA; Elsen AC; Erdman JW
    Nutr Res; 2013 Sep; 33(9):733-42. PubMed ID: 24034573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.