These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37030691)

  • 1. A Haptic Shared Autonomy With Partial Orientation Regulation for DoF Deficiency in Remote Side.
    Li G; Caponetto F; Wu X; Sarakoglou I; Tsagarakis NG
    IEEE Trans Haptics; 2023; 16(1):86-95. PubMed ID: 37030691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Collision Detection for Virtual Proxy Haptic Rendering of Deformable Triangular Mesh Models.
    Ding H; Mitake H; Hasegawa S
    IEEE Trans Haptics; 2019; 12(4):624-634. PubMed ID: 31425052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haptic Rendering of Diverse Tool-Tissue Contact Constraints During Dental Implantation Procedures.
    Zhao X; Zhu Z; Cong Y; Zhao Y; Zhang Y; Wang D
    Front Robot AI; 2020; 7():35. PubMed ID: 33501203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contactless Haptic Display Through Magnetic Field Control.
    Lu X; Yan Y; Qi B; Qian H; Sun J; Quigley A
    IEEE Trans Haptics; 2022; 15(2):328-338. PubMed ID: 35171776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic Teleoperation of UAVs Through Control Barrier Functions.
    Zhang D; Yang G; Khurshid RP
    IEEE Trans Haptics; 2020; 13(1):109-115. PubMed ID: 31940555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-DoF Haptic Rendering of Static Coulomb Friction Using Linear Programming.
    Zhao D; Li Y; Barbic J
    IEEE Trans Haptics; 2018 Feb; ():. PubMed ID: 29994515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haptic Rendering of 3D Geometry on 2D Touch Surface Based on Mechanical Rotation.
    Kim SC; Han BK; Kwon DS
    IEEE Trans Haptics; 2018; 11(1):140-145. PubMed ID: 29611812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Six Degree-of-Freedom Haptic Simulation of a Stringed Musical Instrument for Triggering Sounds.
    Dangxiao Wang ; Xiaohan Zhao ; Youjiao Shi ; Yuru Zhang ; Jing Xiao
    IEEE Trans Haptics; 2017; 10(2):265-275. PubMed ID: 28113956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material Characterization of Hardening Soft Sponge Featuring MR Fluid and Application of 6-DOF MR Haptic Master for Robot-Assisted Surgery.
    Oh JS; Sohn JW; Choi SB
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30042312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Efficiency of Six-DoF Haptic Rendering-Based Virtual Assembly Training.
    Zheng M; Zhao D; Barbic J
    IEEE Trans Haptics; 2021; 14(1):212-224. PubMed ID: 32746380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proxy method for real-time 3-DOF haptic rendering of streaming point cloud data.
    Rydén F; Chizeck HJ
    IEEE Trans Haptics; 2013; 6(3):257-67. PubMed ID: 24808323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic Shared Control in Tele-Manipulation: Effects of Inaccuracies in Guidance on Task Execution.
    van Oosterhout J; Wildenbeest JG; Boessenkool H; Heemskerk CJ; de Baar MR; van der Helm FC; Abbink DA
    IEEE Trans Haptics; 2015; 8(2):164-75. PubMed ID: 25850094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and realization of a novel haptic graspable interface for augmenting touch sensations.
    Pediredla VK; Chandrasekaran K; Annamraju S; Thondiyath A
    Front Robot AI; 2022; 9():927660. PubMed ID: 36246493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preference-Based Human-in-the-Loop Optimization for Perceived Realism of Haptic Rendering.
    Catkin B; Patoglu V
    IEEE Trans Haptics; 2023; 16(4):470-476. PubMed ID: 37053068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System characterization of a novel haptic interface for natural orifice translumenal endoscopic surgery simulation.
    Dargar S; Sankaranarayanan G; De S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():375-9. PubMed ID: 25569975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Classification and New Trends of Shared Control Strategies in Telerobotic Systems: A Survey.
    Li G; Li Q; Yang C; Su Y; Yuan Z; Wu X
    IEEE Trans Haptics; 2023; 16(2):118-133. PubMed ID: 37028362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A task-specific analysis of the benefit of haptic shared control during telemanipulation.
    Boessenkool H; Abbink DA; Heemskerk CJ; van der Helm FC; Wildenbeest JG
    IEEE Trans Haptics; 2013; 6(1):2-12. PubMed ID: 24808263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.