These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37030741)

  • 21. IoT-Based Reinforcement Learning Using Probabilistic Model for Determining Extensive Exploration through Computational Intelligence for Next-Generation Techniques.
    Tiwari PK; Singh P; Rajagopal NK; Deepa K; Gulavani S; Verma A; Kumar YP
    Comput Intell Neurosci; 2023; 2023():5113417. PubMed ID: 37854640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic Integrated Actor-Critic for Deep Reinforcement Learning.
    Zheng J; Kurt MN; Wang X
    IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):6654-6666. PubMed ID: 36256721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Off-Policy Trust Region Policy Optimization Method With Monotonic Improvement Guarantee for Deep Reinforcement Learning.
    Meng W; Zheng Q; Shi Y; Pan G
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2223-2235. PubMed ID: 33481718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm.
    Yang D; Yu J; Du X; He Z; Li P
    PLoS One; 2022; 17(12):e0279649. PubMed ID: 36584089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fully Spiking Actor Network With Intralayer Connections for Reinforcement Learning.
    Chen D; Peng P; Huang T; Tian Y
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; PP():. PubMed ID: 38319762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of binding affinities in chemical space with generative pre-trained transformer and deep reinforcement learning.
    Xu X; Zhou J; Zhu C; Zhan Q; Li Z; Zhang R; Wang Y; Liao X; Gao X
    F1000Res; 2023; 12():757. PubMed ID: 38434657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active Inference: Demystified and Compared.
    Sajid N; Ball PJ; Parr T; Friston KJ
    Neural Comput; 2021 Mar; 33(3):674-712. PubMed ID: 33400903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics.
    Berkenkamp F; Krause A; Schoellig AP
    Mach Learn; 2023; 112(10):3713-3747. PubMed ID: 37692295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Reinforcement Learning for Resource Management on Network Slicing: A Survey.
    Hurtado Sánchez JA; Casilimas K; Caicedo Rendon OM
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Curriculum-Based Asymmetric Multi-Task Reinforcement Learning.
    Huang H; Ye D; Shen L; Liu W
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7258-7269. PubMed ID: 36417748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel deep generative simultaneous recurrent model for efficient representation learning.
    Alam M; Vidyaratne L; Iftekharuddin KM
    Neural Netw; 2018 Nov; 107():12-22. PubMed ID: 30143328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics-Adaptive Continual Reinforcement Learning via Progressive Contextualization.
    Zhang T; Lin Z; Wang Y; Ye D; Fu Q; Yang W; Wang X; Liang B; Yuan B; Li X
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14588-14602. PubMed ID: 37285252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey.
    Xu L; Zhu S; Wen N
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36270582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward robust and scalable deep spiking reinforcement learning.
    Akl M; Ergene D; Walter F; Knoll A
    Front Neurorobot; 2022; 16():1075647. PubMed ID: 36742191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Variational Network Toward Blind Image Restoration.
    Yue Z; Yong H; Zhao Q; Zhang L; Meng D; Wong KK
    IEEE Trans Pattern Anal Mach Intell; 2024 Nov; 46(11):7011-7026. PubMed ID: 38349822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Distributional Perspective on Multiagent Cooperation With Deep Reinforcement Learning.
    Huang L; Fu M; Rao A; Irissappane AA; Zhang J; Xu C
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):4246-4259. PubMed ID: 36121959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intelligent design of the chiral metasurfaces for flexible targets: combining a deep neural network with a policy proximal optimization algorithm.
    Liao X; Gui L; Gao A; Yu Z; Xu K
    Opt Express; 2022 Oct; 30(22):39582-39596. PubMed ID: 36298906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human-in-the-Loop Reinforcement Learning in Continuous-Action Space.
    Luo B; Wu Z; Zhou F; Wang BC
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; PP():. PubMed ID: 37418406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning Generative State Space Models for Active Inference.
    Çatal O; Wauthier S; De Boom C; Verbelen T; Dhoedt B
    Front Comput Neurosci; 2020; 14():574372. PubMed ID: 33304260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.