BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37030793)

  • 1. Extracting Semantic Knowledge From GANs With Unsupervised Learning.
    Xu J; Zhang Z; Hu X
    IEEE Trans Pattern Anal Mach Intell; 2023 Aug; 45(8):9654-9668. PubMed ID: 37030793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GH-Feat: Learning Versatile Generative Hierarchical Features From GANs.
    Xu Y; Shen Y; Zhu J; Yang C; Zhou B
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7395-7411. PubMed ID: 36455092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution histopathology image generation and segmentation through adversarial training.
    Li W; Li J; Polson J; Wang Z; Speier W; Arnold C
    Med Image Anal; 2022 Jan; 75():102251. PubMed ID: 34814059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GAN-Based Image Colorization for Self-Supervised Visual Feature Learning.
    Treneska S; Zdravevski E; Pires IM; Lameski P; Gievska S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repurposing GANs for One-Shot Semantic Part Segmentation.
    Rewatbowornwong P; Tritrong N; Suwajanakorn S
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):5114-5125. PubMed ID: 36001518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions.
    Alajaji SA; Khoury ZH; Elgharib M; Saeed M; Ahmed ARH; Khan MB; Tavares T; Jessri M; Puche AC; Hoorfar H; Stojanov I; Sciubba JJ; Sultan AS
    Mod Pathol; 2024 Jan; 37(1):100369. PubMed ID: 37890670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating object compositionality in Generative Adversarial Networks.
    van Steenkiste S; Kurach K; Schmidhuber J; Gelly S
    Neural Netw; 2020 Oct; 130():309-325. PubMed ID: 32736226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey.
    Iqbal A; Sharif M; Yasmin M; Raza M; Aftab S
    Int J Multimed Inf Retr; 2022; 11(3):333-368. PubMed ID: 35821891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilinear Models of Parts and Appearances in Generative Adversarial Networks.
    Oldfield J; Tzelepis C; Panagakis Y; Nicolaou MA; Patras I
    IEEE Trans Pattern Anal Mach Intell; 2024 Jun; PP():. PubMed ID: 38923485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey on generative adversarial networks for imbalance problems in computer vision tasks.
    Sampath V; Maurtua I; Aguilar Martín JJ; Gutierrez A
    J Big Data; 2021; 8(1):27. PubMed ID: 33552840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmented semantic feature based generative network for generalized zero-shot learning.
    Li Z; Chen Q; Liu Q
    Neural Netw; 2021 Nov; 143():1-11. PubMed ID: 34051525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RF-GANs: A Method to Synthesize Retinal Fundus Images Based on Generative Adversarial Network.
    Chen Y; Long J; Guo J
    Comput Intell Neurosci; 2021; 2021():3812865. PubMed ID: 34804140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Root Phenotyping Using Deep Conditional GANs and Binary Semantic Segmentation.
    Thesma V; Mohammadpour Velni J
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-informed cardiac magnetic resonance image synthesis through conditional generative adversarial networks.
    Amirrajab S; Al Khalil Y; Lorenz C; Weese J; Pluim J; Breeuwer M
    Comput Med Imaging Graph; 2022 Oct; 101():102123. PubMed ID: 36174308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Sentence Auxiliary Adversarial Networks for Fine-Grained Text-to-Image Synthesis.
    Yang Y; Wang L; Xie D; Deng C; Tao D
    IEEE Trans Image Process; 2021; 30():2798-2809. PubMed ID: 33531300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Cell Appearance Model Induced Generative Adversarial Networks for Annotation-Efficient Cell Segmentation and Identification on Adaptive Optics Retinal Images.
    Liu J; Shen C; Aguilera N; Cukras C; Hufnagel RB; Zein WM; Liu T; Tam J
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2820-2831. PubMed ID: 33507868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cantonese Porcelain Image Generation Using User-Guided Generative Adversarial Networks.
    Chen SS; Cui H; Tan P; Sun X; Ji Y; Duh H; Potel M
    IEEE Comput Graph Appl; 2020; 40(5):100-107. PubMed ID: 32833625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
    Ali H; Shah Z
    JMIR Med Inform; 2022 Jun; 10(6):e37365. PubMed ID: 35709336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Generative Adversarial Reinforcement Learning for Semi-Supervised Segmentation of Low-Contrast and Small Objects in Medical Images.
    Xu C; Zhang T; Zhang D; Zhang D; Han J
    IEEE Trans Med Imaging; 2024 Apr; PP():. PubMed ID: 38557623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.