These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 37030839)
1. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network. Peng L; Yang C; Chen Y; Liu W IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839 [TBL] [Abstract][Full Text] [Related]
2. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network. Cao R; He C; Wei P; Su Y; Xia J; Zheng C Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487 [TBL] [Abstract][Full Text] [Related]
3. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations. Ji C; Liu Z; Wang Y; Ni J; Zheng C Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212 [TBL] [Abstract][Full Text] [Related]
4. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. Wang L; You ZH; Li YM; Zheng K; Huang YA PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655 [TBL] [Abstract][Full Text] [Related]
5. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling. Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289 [TBL] [Abstract][Full Text] [Related]
6. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks. Niu M; Zou Q; Wang C Bioinformatics; 2022 Apr; 38(8):2246-2253. PubMed ID: 35157027 [TBL] [Abstract][Full Text] [Related]
7. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. Zhang Y; Wang Z; Wei H; Chen M BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961 [TBL] [Abstract][Full Text] [Related]
8. SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction. Shang J; Zhao L; He X; Meng X; Zhang L; Ge D; Li F; Liu JX IEEE J Biomed Health Inform; 2024 Nov; 28(11):7006-7014. PubMed ID: 39250355 [TBL] [Abstract][Full Text] [Related]
9. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification. Li G; Li Y; Liang C; Luo J Brief Funct Genomics; 2024 Jul; 23(4):418-428. PubMed ID: 38061910 [TBL] [Abstract][Full Text] [Related]
10. LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations. Wang W; Han P; Li Z; Nie R; Wang K; Wang L; Liao H IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(2):289-300. PubMed ID: 38231821 [TBL] [Abstract][Full Text] [Related]
11. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network. Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658 [TBL] [Abstract][Full Text] [Related]
12. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs. Dai Q; Liu Z; Wang Z; Duan X; Guo M Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619 [TBL] [Abstract][Full Text] [Related]
13. Predicting associations between CircRNA and diseases through structure-aware graph transformer and path-integral convolution. Wu J; Lu P; Zhang W Anal Biochem; 2024 Sep; 692():115554. PubMed ID: 38710353 [TBL] [Abstract][Full Text] [Related]
14. MPCLCDA: predicting circRNA-disease associations by using automatically selected meta-path and contrastive learning. Liu W; Tang T; Lu X; Fu X; Yang Y; Peng L Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328701 [TBL] [Abstract][Full Text] [Related]
15. Predicting the potential associations between circRNA and drug sensitivity using a multisource feature-based approach. Yin S; Xu P; Jiang Y; Yang X; Lin Y; Zheng M; Hu J; Zhao Q J Cell Mol Med; 2024 Oct; 28(19):e18591. PubMed ID: 39347936 [TBL] [Abstract][Full Text] [Related]
16. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning. Li G; Lin Y; Luo J; Xiao Q; Liang C Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557 [TBL] [Abstract][Full Text] [Related]
17. LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks. Zhang B; Wang H; Ma C; Huang H; Fang Z; Qu J BMC Bioinformatics; 2024 Oct; 25(1):332. PubMed ID: 39407120 [TBL] [Abstract][Full Text] [Related]
18. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network. Wang L; You ZH; Huang YA; Huang DS; Chan KCC Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982 [TBL] [Abstract][Full Text] [Related]
19. LGCDA: Predicting CircRNA-Disease Association Based on Fusion of Local and Global Features. Lan W; Li C; Chen Q; Yu N; Pan Y; Zheng Y; Chen YP IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1413-1422. PubMed ID: 38607720 [TBL] [Abstract][Full Text] [Related]
20. GEHGAN: CircRNA-disease association prediction via graph embedding and heterogeneous graph attention network. Wang Y; Lu P Comput Biol Chem; 2024 Jun; 110():108079. PubMed ID: 38704917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]