BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37030839)

  • 1. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network.
    Peng L; Yang C; Chen Y; Liu W
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling.
    Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks.
    Niu M; Zou Q; Wang C
    Bioinformatics; 2022 Apr; 38(8):2246-2253. PubMed ID: 35157027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations.
    Wang W; Han P; Li Z; Nie R; Wang K; Wang L; Liao H
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(2):289-300. PubMed ID: 38231821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MPCLCDA: predicting circRNA-disease associations by using automatically selected meta-path and contrastive learning.
    Liu W; Tang T; Lu X; Fu X; Yang Y; Peng L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GEHGAN: CircRNA-disease association prediction via graph embedding and heterogeneous graph attention network.
    Wang Y; Lu P
    Comput Biol Chem; 2024 Jun; 110():108079. PubMed ID: 38704917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association.
    Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion.
    Fan C; Lei X; Pan Y
    Front Genet; 2020; 11():540751. PubMed ID: 33193615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks.
    Bamunu Mudiyanselage T; Lei X; Senanayake N; Zhang Y; Pan Y
    Methods; 2022 Feb; 198():32-44. PubMed ID: 34748953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of circRNA-MiRNA Association Using Singular Value Decomposition and Graph Neural Networks.
    Qian Y; Zheng J; Jiang Y; Li S; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3461-3468. PubMed ID: 36395130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder.
    Wang H; Han J; Li H; Duan L; Liu Z; Cheng H
    Math Biosci Eng; 2023 Feb; 20(5):7957-7980. PubMed ID: 37161181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.