These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37030847)

  • 1. An Evaluation of View Rotation Techniques for Seated Navigation in Virtual Reality.
    Benda B; Sargunam SP; Nourani M; Ragan ED
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):4257-4270. PubMed ID: 37030847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On Rotation Gains Within and Beyond Perceptual Limitations for Seated VR.
    Wang C; Zhang SH; Zhang Y; Zollmann S; Hu SM
    IEEE Trans Vis Comput Graph; 2023 Jul; 29(7):3380-3391. PubMed ID: 35294351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation in Virtual Reality Does Not Fully Measure Up to the Real-World.
    Kimura K; Reichert JF; Olson A; Pouya OR; Wang X; Moussavi Z; Kelly DM
    Sci Rep; 2017 Dec; 7(1):18109. PubMed ID: 29273759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HeadJoystick: Improving Flying in VR Using a Novel Leaning-Based Interface.
    Hashemian AM; Lotfaliei M; Adhikari A; Kruijff E; Riecke BE
    IEEE Trans Vis Comput Graph; 2022 Apr; 28(4):1792-1809. PubMed ID: 32946395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D virtual reality vs. 2D desktop registration user interface comparison.
    Bueckle A; Buehling K; Shih PC; Börner K
    PLoS One; 2021; 16(10):e0258103. PubMed ID: 34705835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superman vs Giant: A Study on Spatial Perception for a Multi-Scale Mixed Reality Flying Telepresence Interface.
    Piumsomboon T; Lee GA; Ens B; Thomas BH; Billinghurst M
    IEEE Trans Vis Comput Graph; 2018 Nov; 24(11):2974-2982. PubMed ID: 30387715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding, Modeling and Simulating Unintended Positional Drift during Repetitive Steering Navigation Tasks in Virtual Reality.
    Brument H; Bruder G; Marchal M; Olivier AH; Argelaguet F
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4300-4310. PubMed ID: 34449383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task.
    Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z
    Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Navigation Controls and Field-of-View Modes Affect Cybersickness Severity and Spatiotemporal Gait Patterns After Exposure to Virtual Environments.
    Lin MB; Wu B; Cheng SW
    Hum Factors; 2024 Jul; 66(7):1942-1960. PubMed ID: 37501376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplified Head Rotation in Virtual Reality and the Effects on 3D Search, Training Transfer, and Spatial Orientation.
    Ragan ED; Scerbo S; Bacim F; Bowman DA
    IEEE Trans Vis Comput Graph; 2017 Aug; 23(8):1880-1895. PubMed ID: 28113630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Impact of Head-Body Rotations on Audio-Visual Spatial Perception for Virtual Reality Applications.
    Bernal-Berdun E; Vallejo M; Sun Q; Serrano A; Gutierrez D
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2624-2632. PubMed ID: 38446650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual reality in neurologic rehabilitation of spatial disorientation.
    Kober SE; Wood G; Hofer D; Kreuzig W; Kiefer M; Neuper C
    J Neuroeng Rehabil; 2013 Feb; 10():17. PubMed ID: 23394289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Horizontally Flipped Interaction in Virtual Reality for Improving Spatial Ability.
    Bozgeyikli LL; Bozgeyikli E; Schnell C; Clark J
    IEEE Trans Vis Comput Graph; 2023 Nov; 29(11):4514-4524. PubMed ID: 37831578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaning-Based Interfaces Improve Ground-Based VR Locomotion in Reach-the-Target, Follow-the-Path, and Racing Tasks.
    Hashemian AM; Adhikari A; Kruijff E; Heyde MV; Riecke BE
    IEEE Trans Vis Comput Graph; 2023 Mar; 29(3):1748-1768. PubMed ID: 34847032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Efficient Visual Guidance in Limited Field-of-View Head-Mounted Displays.
    Bork F; Schnelzer C; Eck U; Navab N
    IEEE Trans Vis Comput Graph; 2018 Nov; 24(11):2983-2992. PubMed ID: 30188832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach.
    Kim YM; Rhiu I
    Appl Ergon; 2021 Oct; 96():103482. PubMed ID: 34116411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M
    IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation and Evaluation of a 50 kHz, 28μs Motion-to-Pose Latency Head Tracking Instrument.
    Blate A; Whitton M; Singh M; Welch G; State A; Whitted T; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1970-1980. PubMed ID: 30843843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments.
    Khenak N; Vezien J; Bourdot P
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.