These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37030894)

  • 1. Does interpolation and intra-user variability affect the accuracy of arthrokinematic measurements in the knee? A dual fluoroscopic imaging and model-based tracking study.
    Ramsdell JC; Scott ME; Beynnon BD; Fiorentino NM
    Med Eng Phys; 2023 Apr; 114():103968. PubMed ID: 37030894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of statistical shape modeling and alternating interpolation-based model tracking technique for measuring knee kinematics
    Lu HY; Lin CC; Shih KS; Lu TW; Kuo MY; Li SY; Hsu HC
    PeerJ; 2023; 11():e15371. PubMed ID: 37334125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a machine learning technique for segmentation and pose estimation in single plane fluoroscopy.
    Broberg JS; Chen J; Jensen A; Banks SA; Teeter MG
    J Orthop Res; 2023 Aug; 41(8):1767-1773. PubMed ID: 36691875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpolation of three dimensional kinematics with dual-quaternions.
    Goodsitt JE; Havey RM; Khayatzadeh S; Voronov LI; Patwardhan AG
    J Biomech; 2017 Jan; 51():105-110. PubMed ID: 27829494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy.
    Baka N; Kaptein BL; Giphart JE; Staring M; de Bruijne M; Lelieveldt BP; Valstar E
    J Biomech; 2014 Jan; 47(1):122-9. PubMed ID: 24207131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Dynamic IMU-to-Segment Misalignment Error on 3-DOF Knee Angle Estimation in Walking and Running.
    Jiang C; Yang Y; Mao H; Yang D; Wang W
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoroscopic and radiostereometric analysis of a bicruciate-retaining versus a posterior cruciate-retaining total knee arthroplasty: a randomized controlled trial.
    Mills K; Wymenga AB; Bénard MR; Kaptein BL; Defoort KC; van Hellemondt GG; Heesterbeek PJC
    Bone Joint J; 2023 Jan; 105-B(1):35-46. PubMed ID: 36587259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model-based tracking method for measuring 3D dynamic joint motion using an alternating biplane x-ray imaging system.
    Lin CC; Li JD; Lu TW; Kuo MY; Kuo CC; Hsu HC
    Med Phys; 2018 Jun; ():. PubMed ID: 29889983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An interpolation technique to enable accurate three-dimensional joint kinematic analyses using asynchronous biplane fluoroscopy.
    Akbari-Shandiz M; Mozingo JD; Holmes Iii DR; Zhao KD
    Med Eng Phys; 2018 Oct; 60():109-116. PubMed ID: 30098937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics.
    Wang B; Roach KE; Kapron AL; Fiorentino NM; Saltzman CL; Singer M; Anderson AE
    Gait Posture; 2015 May; 41(4):888-93. PubMed ID: 25864769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a portable marker-based motion analysis system.
    Wang S; Zeng X; Huangfu L; Xie Z; Ma L; Huang W; Zhang Y
    J Orthop Surg Res; 2021 Jul; 16(1):425. PubMed ID: 34217352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity.
    Akbarshahi M; Schache AG; Fernandez JW; Baker R; Banks S; Pandy MG
    J Biomech; 2010 May; 43(7):1292-301. PubMed ID: 20206357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion.
    Li G; Van de Velde SK; Bingham JT
    J Biomech; 2008; 41(7):1616-22. PubMed ID: 18394629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the moving fluoroscope on gait patterns.
    Hitz M; Schütz P; Angst M; Taylor WR; List R
    PLoS One; 2018; 13(7):e0200608. PubMed ID: 30005086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body-Worn IMU-Based Human Hip and Knee Kinematics Estimation during Treadmill Walking.
    McGrath T; Stirling L
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of a contour-based biplane fluoroscopy technique for tracking knee joint kinematics of different speeds.
    Giphart JE; Zirker CA; Myers CA; Pennington WW; LaPrade RF
    J Biomech; 2012 Nov; 45(16):2935-8. PubMed ID: 23021610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of instantaneous knee kinematics during walking and running.
    Wang W; Tsai TY; Zhang C; Lin J; Dai W; Zhang M; Potthast W; Liu Y; Wang S
    Gait Posture; 2022 Sep; 97():8-12. PubMed ID: 35843009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knee hyperextension does not adversely affect dynamic in vivo kinematics after anterior cruciate ligament reconstruction.
    Nagai K; Gale T; Herbst E; Tashiro Y; Irrgang JJ; Tashman S; Fu FH; Anderst W
    Knee Surg Sports Traumatol Arthrosc; 2018 Feb; 26(2):448-454. PubMed ID: 28712024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total knee arthroplasty three-dimensional kinematic estimation prevision. From a two-dimensional fluoroscopy acquired dynamic model.
    Lebel BP; Pineau V; Gouzy SL; Geais L; Parienti JJ; Dutheil JJ; Vielpeau CH
    Orthop Traumatol Surg Res; 2011 Apr; 97(2):111-20. PubMed ID: 21439928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stair Climbing and High Knee Flexion Activities in Bi-Cruciate Retaining Total Knee Arthroplasty: In Vivo Kinematics and Articular Contact Analysis.
    Arauz P; Klemt C; Limmahakhun S; An S; Kwon YM
    J Arthroplasty; 2019 Mar; 34(3):570-576. PubMed ID: 30514641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.