These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37031140)

  • 1. Uncovering the bridging role of slow atoms in unusual caged dynamics and β-relaxation of binary metallic glasses.
    Chen Y; Feng S; Lu X; Pan S; Xia C; Wang LM
    J Chem Phys; 2023 Apr; 158(13):134511. PubMed ID: 37031140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Signature of β-Relaxation in La-Based Metallic Glasses.
    Wang XD; Zhang J; Xu TD; Yu Q; Cao QP; Zhang DX; Jiang JZ
    J Phys Chem Lett; 2018 Aug; 9(15):4308-4313. PubMed ID: 30016114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental Link between β Relaxation, Excess Wings, and Cage-Breaking in Metallic Glasses.
    Yu HB; Yang MH; Sun Y; Zhang F; Liu JB; Wang CZ; Ho KM; Richert R; Samwer K
    J Phys Chem Lett; 2018 Oct; 9(19):5877-5883. PubMed ID: 30240226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-like atoms in dense-packed solid glasses.
    Chang C; Zhang HP; Zhao R; Li FC; Luo P; Li MZ; Bai HY
    Nat Mater; 2022 Nov; 21(11):1240-1245. PubMed ID: 35970963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling between relaxation, transport, and caged dynamics in polymers: from cage restructuring to diffusion.
    Puosi F; Leporini D
    J Phys Chem B; 2011 Dec; 115(48):14046-51. PubMed ID: 21793599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses.
    Zhang J; Gao P; Zhang W
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion dynamics of supercooled water modeled with the cage-jump motion and hydrogen-bond rearrangement.
    Kikutsuji T; Kim K; Matubayasi N
    J Chem Phys; 2019 May; 150(20):204502. PubMed ID: 31153185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling between relaxation, transport and caged dynamics in a binary mixture on a per-component basis.
    Puosi F; De Michele C; Leporini D
    J Chem Phys; 2013 Mar; 138(12):12A532. PubMed ID: 23556783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual fast secondary relaxation in metallic glass.
    Wang Q; Zhang ST; Yang Y; Dong YD; Liu CT; Lu J
    Nat Commun; 2015 Jul; 6():7876. PubMed ID: 26204999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-scale simulation to study the dynamical properties and local structure of Cu-Zr and Ni-Zr metallic glass-forming alloys.
    Yang MH; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2016 Mar; 18(10):7169-83. PubMed ID: 26888279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cage Size and Jump Precursors in Glass-Forming Liquids: Experiment and Simulations.
    Pastore R; Pesce G; Sasso A; Pica Ciamarra M
    J Phys Chem Lett; 2017 Apr; 8(7):1562-1568. PubMed ID: 28301929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation and Strain-Hardening Relationships in Highly Rejuvenated Metallic Glasses.
    Yuan X; Şopu D; Song K; Eckert J
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural origins of Johari-Goldstein relaxation in a metallic glass.
    Liu YH; Fujita T; Aji DP; Matsuura M; Chen MW
    Nat Commun; 2014; 5():3238. PubMed ID: 24488115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling the Structural Origins of Dynamic Diversity in Pd-Based Metallic Glasses.
    Xu T; Wang XD; Dufresne EM; Beyer KA; An P; Ma J; Wang N; Liu S; Cao QP; Ding SQ; Zhang DX; Zheng L; Zhang J; Hu TD; Jiang Z; Huang Y; Jiang JZ
    Small; 2024 Jun; 20(25):e2309331. PubMed ID: 38213019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Atomic-Scale Features of Low Temperature-Relaxation Dynamics in Metallic Glasses.
    Wang B; Shang BS; Gao XQ; Wang WH; Bai HY; Pan MX; Guan PF
    J Phys Chem Lett; 2016 Dec; 7(23):4945-4950. PubMed ID: 27934059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study of cage decay, near constant loss, and crossover to cooperative ion hopping in lithium metasilicate.
    Habasaki J; Ngai KL; Hiwatari Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021205. PubMed ID: 12241162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural relaxation affecting shear-transformation avalanches in metallic glasses.
    Niiyama T; Wakeda M; Shimokawa T; Ogata S
    Phys Rev E; 2019 Oct; 100(4-1):043002. PubMed ID: 31770901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast dynamics in a model metallic glass-forming material.
    Zhang H; Wang X; Yu HB; Douglas JF
    J Chem Phys; 2021 Feb; 154(8):084505. PubMed ID: 33639730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isochronal superpositioning of the caged dynamics, the α, and the Johari-Goldstein β relaxations in metallic glasses.
    Ren NN; Guan PF; Ngai KL
    J Chem Phys; 2021 Dec; 155(24):244502. PubMed ID: 34972387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses.
    Yu HB; Richert R; Samwer K
    Sci Adv; 2017 Nov; 3(11):e1701577. PubMed ID: 29159283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.