BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 37031185)

  • 21. Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis.
    Wang Y; Jia L; Shen J; Wang Y; Fu Z; Su SA; Cai Z; Wang JA; Xiang M
    PLoS Pathog; 2018 Jan; 14(1):e1006872. PubMed ID: 29360865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmed cell death in tumor immunity: mechanistic insights and clinical implications.
    Wang M; Yu F; Zhang Y; Li P
    Front Immunol; 2023; 14():1309635. PubMed ID: 38283351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathophysiological Roles of Intracellular Proteases in Neuronal Development and Neurological Diseases.
    Yagami T; Yamamoto Y; Koma H
    Mol Neurobiol; 2019 May; 56(5):3090-3112. PubMed ID: 30097848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.
    Oh SS; Park S; Lee KW; Madhi H; Park SG; Lee HG; Cho YY; Yoo J; Dong Kim K
    Cell Death Dis; 2017 Apr; 8(4):e2729. PubMed ID: 28383558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sigma-1 Receptor Antagonist (BD1047) Decreases Cathepsin B Secretion in HIV-Infected Macrophages Exposed to Cocaine.
    López OV; Gorantla S; Segarra AC; Andino Norat MC; Álvarez M; Skolasky RL; Meléndez LM
    J Neuroimmune Pharmacol; 2019 Jun; 14(2):226-240. PubMed ID: 30306495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Programmed cell death in spinal cord injury pathogenesis and therapy.
    Shi Z; Yuan S; Shi L; Li J; Ning G; Kong X; Feng S
    Cell Prolif; 2021 Mar; 54(3):e12992. PubMed ID: 33506613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cathepsin B degrades RbcL during freezing-induced programmed cell death in Arabidopsis.
    Yang G; Chen T; Fan TT; Lin XY; Cui YQ; Dong WC; An LZ; Zhang H
    Plant Cell Rep; 2024 Feb; 43(3):81. PubMed ID: 38418607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel insights into the interplay between m6A modification and programmed cell death in cancer.
    Chen J; Ye M; Bai J; Hu C; Lu F; Gu D; Yu P; Tang Q
    Int J Biol Sci; 2023; 19(6):1748-1763. PubMed ID: 37063421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging connectivity of programmed cell death pathways and its physiological implications.
    Bedoui S; Herold MJ; Strasser A
    Nat Rev Mol Cell Biol; 2020 Nov; 21(11):678-695. PubMed ID: 32873928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The autophagosomal-lysosomal compartment in programmed cell death.
    Bursch W
    Cell Death Differ; 2001 Jun; 8(6):569-81. PubMed ID: 11536007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Small Molecules to Dissect Non-apoptotic Programmed Cell Death: Necroptosis, Ferroptosis, and Pyroptosis.
    Dong T; Liao D; Liu X; Lei X
    Chembiochem; 2015 Dec; 16(18):2557-61. PubMed ID: 26388514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer.
    Zhang C; Liu N
    Front Immunol; 2022; 13():920059. PubMed ID: 35958626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice.
    Wu Z; Ni J; Liu Y; Teeling JL; Takayama F; Collcutt A; Ibbett P; Nakanishi H
    Brain Behav Immun; 2017 Oct; 65():350-361. PubMed ID: 28610747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HIV Infection Induces Extracellular Cathepsin B Uptake and Damage to Neurons.
    Cantres-Rosario YM; Ortiz-Rodríguez SC; Santos-Figueroa AG; Plaud M; Negron K; Cotto B; Langford D; Melendez LM
    Sci Rep; 2019 May; 9(1):8006. PubMed ID: 31142756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The emerging roles of nitric oxide in ferroptosis and pyroptosis of tumor cells.
    He Q; Qu M; Xu C; Shi W; Hussain M; Jin G; Zhu H; Zeng LH; Wu X
    Life Sci; 2022 Feb; 290():120257. PubMed ID: 34952041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular Staphylococcus aureus and host cell death pathways.
    Soe YM; Bedoui S; Stinear TP; Hachani A
    Cell Microbiol; 2021 May; 23(5):e13317. PubMed ID: 33550697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cathepsin B degrades amyloid-β in mice expressing wild-type human amyloid precursor protein.
    Wang C; Sun B; Zhou Y; Grubb A; Gan L
    J Biol Chem; 2012 Nov; 287(47):39834-41. PubMed ID: 23024364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis.
    Chen Y; Luo X; Xu B; Bao X; Jia H; Yu B
    Cardiovasc Drugs Ther; 2022 Dec; ():. PubMed ID: 36522550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lysosomal localization and mechanism of membrane penetration influence nonenveloped virus activation of the NLRP3 inflammasome.
    Barlan AU; Danthi P; Wiethoff CM
    Virology; 2011 Apr; 412(2):306-14. PubMed ID: 21315400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic.
    Hook G; Yu J; Toneff T; Kindy M; Hook V
    J Alzheimers Dis; 2014; 41(1):129-49. PubMed ID: 24595198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.