BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37031211)

  • 1. Conformational cycle of human polyamine transporter ATP13A2.
    Mu J; Xue C; Fu L; Yu Z; Nie M; Wu M; Chen X; Liu K; Bu R; Huang Y; Yang B; Han J; Jiang Q; Chan KC; Zhou R; Li H; Huang A; Wang Y; Liu Z
    Nat Commun; 2023 Apr; 14(1):1978. PubMed ID: 37031211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of polyamine transport by human ATP13A2 (PARK9).
    Sim SI; von Bülow S; Hummer G; Park E
    Mol Cell; 2021 Nov; 81(22):4635-4649.e8. PubMed ID: 34715013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM reveals mechanistic insights into lipid-facilitated polyamine export by human ATP13A2.
    Tomita A; Daiho T; Kusakizako T; Yamashita K; Ogasawara S; Murata T; Nishizawa T; Nureki O
    Mol Cell; 2021 Dec; 81(23):4799-4809.e5. PubMed ID: 34798056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2.
    Tillinghast J; Drury S; Bowser D; Benn A; Lee KPK
    Mol Cell; 2021 Nov; 81(22):4650-4662.e4. PubMed ID: 34715014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP13A2 deficiency disrupts lysosomal polyamine export.
    van Veen S; Martin S; Van den Haute C; Benoy V; Lyons J; Vanhoutte R; Kahler JP; Decuypere JP; Gelders G; Lambie E; Zielich J; Swinnen JV; Annaert W; Agostinis P; Ghesquière B; Verhelst S; Baekelandt V; Eggermont J; Vangheluwe P
    Nature; 2020 Feb; 578(7795):419-424. PubMed ID: 31996848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and transport mechanism of P5B-ATPases.
    Li P; Wang K; Salustros N; Grønberg C; Gourdon P
    Nat Commun; 2021 Jun; 12(1):3973. PubMed ID: 34172751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress.
    Vrijsen S; Besora-Casals L; van Veen S; Zielich J; Van den Haute C; Hamouda NN; Fischer C; Ghesquière B; Tournev I; Agostinis P; Baekelandt V; Eggermont J; Lambie E; Martin S; Vangheluwe P
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31198-31207. PubMed ID: 33229544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9).
    Daniel G; Musso A; Tsika E; Fiser A; Glauser L; Pletnikova O; Schneider BL; Moore DJ
    Neurobiol Dis; 2015 Jan; 73():229-43. PubMed ID: 25461191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryo-EM structures and transport mechanism of human P5B type ATPase ATP13A2.
    Chen X; Zhou M; Zhang S; Yin J; Zhang P; Xuan X; Wang P; Liu Z; Zhou B; Yang M
    Cell Discov; 2021 Nov; 7(1):106. PubMed ID: 34728622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hereditary Parkinsonism-Associated Genetic Variations in PARK9 Locus Lead to Functional Impairment of ATPase Type 13A2.
    Park JS; Sue CM
    Curr Protein Pept Sci; 2017; 18(7):725-732. PubMed ID: 26965689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P5-ATPases: Structure, substrate specificities, and transport mechanisms.
    Sim SI; Park E
    Curr Opin Struct Biol; 2023 Apr; 79():102531. PubMed ID: 36724561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parkinson's disease-associated human P5B-ATPase ATP13A2 increases spermidine uptake.
    De La Hera DP; Corradi GR; Adamo HP; De Tezanos Pinto F
    Biochem J; 2013 Feb; 450(1):47-53. PubMed ID: 23205587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis.
    Marcos AL; Corradi GR; Mazzitelli LR; Casali CI; Fernández Tome MDC; Adamo HP; de Tezanos Pinto F
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182993. PubMed ID: 31132336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Green Fluorescent Polyamines to Analyze ATP13A2 and ATP13A3 Activity in the Mammalian Polyamine Transport System.
    Houdou M; Jacobs N; Coene J; Azfar M; Vanhoutte R; Van den Haute C; Eggermont J; Daniëls V; Verhelst SHL; Vangheluwe P
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ATP13A2 via PHD2-HIF1α Signaling Is Critical for Cellular Iron Homeostasis: Implications for Parkinson's Disease.
    Rajagopalan S; Rane A; Chinta SJ; Andersen JK
    J Neurosci; 2016 Jan; 36(4):1086-95. PubMed ID: 26818499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP13A2 Regulates Cellular α-Synuclein Multimerization, Membrane Association, and Externalization.
    Si J; Van den Haute C; Lobbestael E; Martin S; van Veen S; Vangheluwe P; Baekelandt V
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33799982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP13A2 modifies mitochondrial localization of overexpressed TOM20 to autolysosomal pathway.
    Hatori Y; Kanda Y; Nonaka S; Nakanishi H; Kitazawa T
    PLoS One; 2022; 17(11):e0276823. PubMed ID: 36445873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parkinson's disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction.
    Park JS; Koentjoro B; Veivers D; Mackay-Sim A; Sue CM
    Hum Mol Genet; 2014 Jun; 23(11):2802-15. PubMed ID: 24399444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78).
    Estrada-Cuzcano A; Martin S; Chamova T; Synofzik M; Timmann D; Holemans T; Andreeva A; Reichbauer J; De Rycke R; Chang DI; van Veen S; Samuel J; Schöls L; Pöppel T; Mollerup Sørensen D; Asselbergh B; Klein C; Zuchner S; Jordanova A; Vangheluwe P; Tournev I; Schüle R
    Brain; 2017 Feb; 140(2):287-305. PubMed ID: 28137957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism.
    Park JS; Mehta P; Cooper AA; Veivers D; Heimbach A; Stiller B; Kubisch C; Fung VS; Krainc D; Mackay-Sim A; Sue CM
    Hum Mutat; 2011 Aug; 32(8):956-64. PubMed ID: 21542062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.