These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37031379)

  • 1. Predator signaling of multiple prey on different trophic levels structures trophic cascades.
    Belgrad BA; Smee DL; Weissburg MJ
    Ecology; 2023 Jun; 104(6):e4050. PubMed ID: 37031379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Habitat complexity influences cascading effects of multiple predators.
    Grabowski JH; Hughes AR; Kimbro DL
    Ecology; 2008 Dec; 89(12):3413-22. PubMed ID: 19137947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting complexity of adjacent habitats influences the strength of cascading predatory effects.
    Byers JE; Holmes ZC; Malek JC
    Oecologia; 2017 Sep; 185(1):107-117. PubMed ID: 28803360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destabilizing effects on a classic tri-trophic oyster-reef cascade.
    Schweiss VR; Rakocinski CF
    PLoS One; 2020; 15(12):e0242965. PubMed ID: 33320866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonconsumptive effects of a predator weaken then rebound over time.
    Kimbro DL; Grabowski JH; Hughes AR; Piehler MF; White JW
    Ecology; 2017 Mar; 98(3):656-667. PubMed ID: 27987303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamics affect predator controls through physical and sensory stressors.
    Pruett JL; Weissburg MJ
    Oecologia; 2018 Apr; 186(4):1079-1089. PubMed ID: 29460028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predator biomass determines the magnitude of non-consumptive effects (NCEs) in both laboratory and field environments.
    Hill JM; Weissburg MJ
    Oecologia; 2013 May; 172(1):79-91. PubMed ID: 23250631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades.
    Kimbro DL; Grosholz ED; Baukus AJ; Nesbitt NJ; Travis NM; Attoe S; Coleman-Hulbert C
    Oecologia; 2009 Jun; 160(3):563-75. PubMed ID: 19352719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prey size structure diminishes cascading effects by increasing interference competition and predation among prey.
    Geraldii NR
    Ecology; 2015 Sep; 96(9):2533-43. PubMed ID: 26594709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental forcing and predator consumption outweigh the nonconsumptive effects of multiple predators on oyster reefs.
    Kimbro DL; Tillotson HG; White JW
    Ecology; 2020 Jul; 101(7):e03041. PubMed ID: 32134508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predatory blue crabs induce stronger nonconsumptive effects in eastern oysters
    Scherer AE; Garcia MM; Smee DL
    PeerJ; 2017; 5():e3042. PubMed ID: 28265512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predator cue and prey density interactively influence indirect effects on basal resources in intertidal oyster reefs.
    Hughes AR; Rooker K; Murdock M; Kimbro DL
    PLoS One; 2012; 7(9):e44839. PubMed ID: 22970316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated predator extinctions: predator identity affects survival and recruitment of oysters.
    O'Connor NE; Grabowski JH; Ladwig LM; Bruno JF
    Ecology; 2008 Feb; 89(2):428-38. PubMed ID: 18409432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional environmental variation and local species interactions influence biogeographic structure on oyster reefs.
    Grabowski JH; Gouhier TC; Byers JE; Dodd LF; Hughes AR; Piehler MF; Kimbro DL
    Ecology; 2020 Feb; 101(2):e02921. PubMed ID: 31652333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions.
    Preisser EL; Orrock JL; Schmitz OJ
    Ecology; 2007 Nov; 88(11):2744-51. PubMed ID: 18051642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. You Are What you Eat: a Metabolomics Approach to Understanding Prey Responses to Diet-Dependent Chemical Cues Released by Predators.
    Weissburg M; Poulin RX; Kubanek J
    J Chem Ecol; 2016 Oct; 42(10):1037-1046. PubMed ID: 27683309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of structural complexity, prey density, and "predator-free space" on prey survivorship at created oyster reef mesocosms.
    Humphries AT; La Peyre MK; Decossas GA
    PLoS One; 2011; 6(12):e28339. PubMed ID: 22145037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical encoding of risk perception and predator detection among estuarine invertebrates.
    Poulin RX; Lavoie S; Siegel K; Gaul DA; Weissburg MJ; Kubanek J
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):662-667. PubMed ID: 29311305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system.
    Rielly-Carroll E; Freestone AL
    Oecologia; 2017 Mar; 183(3):899-908. PubMed ID: 28000022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does fear beget fear? Risk-mediated habitat selection triggers predator avoidance at lower trophic levels.
    Blubaugh CK; Widick IV; Kaplan I
    Oecologia; 2017 Sep; 185(1):1-11. PubMed ID: 28730345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.